
www.manaraa.com

INFORMATION TO USERS

This manuscript has been reproduced from the microfilm master. UMI 
films the text directly from the original or copy submitted. Thus, some 
thesis and dissertation copies are in typewriter face, while others may 
be from any type of computer printer.

The quality of this reproduction is dependent upon the quality of the 
copy submitted. Broken or indistinct print, colored or poor quality 
illustrations and photographs, print bleedthrough, substandard margins, 
and improper alignment can adversely affect reproduction.

In the unlikely event that the author did not send UM I a  complete 
manuscript and there are missing pages, these will be noted. Also, if 
unauthorized copyright material had to be removed, a  note will indicate 
the deletion.

Oversize materials (e.g., maps, drawings, charts) are reproduced by 
sectioning the original, beginning at the upper left-hand corner and 
continuing from left to right in equal sections with small overlaps. Each 
original is also photographed in one exposure and is included in 
reduced form at the back of the book.

Photographs included in the original manuscript have been reproduced 
xerographically in this copy. Higher quality 6 " x 9" black and white 
photographic prints are available for any photographs or illustrations 
appearing in this copy for an additional charge. Contact UM I directly 
to order.

University Microfilms International 
A Bell & Howell Information Company 

300 North Zeeb Road. Ann Arbor, Ml 48106-1346 USA 
313/761-4700 800/521-0600

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



www.manaraa.comReproduced with permission of the copyright owner. Further reproduction prohibited without permission.



www.manaraa.com

Order Number 9284480

Parallel algorithm s for distributed system s and software 
engineering

Hu, Jie, Ph.D.

The University of Texas at Dallas, 1992

Copyright ©1992 by Hu, Jie. All rights reserved.

U M I
300 N. Zeeb Rd.
Ann Arbor, MI 48106

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



www.manaraa.comReproduced with permission of the copyright owner. Further reproduction prohibited without permission.



www.manaraa.com

PARALLEL ALGORITHMS FOR DISTRIBUTED SYSTEMS 

AND SOFTWARE ENGINEERING 

b y

JIE HU, B.S., M.S.

DISSERTATION

Presented to the Graduate School of 

The University of Texas at Dallas 

in Partial Fulfillment 

of the Requirements 

for the Degree of 

DOCTOR OF PHILOSOPHY IN COMPUTER SCIENCE

THE UNIVERSITY OF TEXAS. AT DALLAS 

August 1992

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



www.manaraa.com

PARALLEL ALGORITHMS FOR DISTRIBUTED SYSTEMS 

AND SOFTWARE ENGINEERING

APPROVED BY SUPERVISORY COMMITTEE

Dr. Eliezer Dek nan

Dr. Larry Amraann

Dr. Ivor Page

i.  A J A
Dr. William Pervin

Dr. Haim Schweitzer

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



www.manaraa.com

Copyright 

by 

Jie  Hu 

1992

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



www.manaraa.com

Copyright Disclaimer

THE UNIVERSITY OF TEXAS AT DALLAS

C E R T I F I C A T E

I hereby c e r t i f y  th a t  any e x t e n s i v e  co p y r ig h ted  m a t e r ia l  which  

I have u t i l i z e d  in  the m anuscrip t o f  my d i s s e r t a t i o n  i s  w ith  

th e  w r i t t e n  p erm iss ion  o f  th e  c o p y r ig h t  owner. I  hereby agree  

to  indem nify  and save h arm less  The U n iv e r s i t y  o f  Texas a t  D a lla s  

from any and a l l  c la im s which may be a s s e r t e d  or which may a r i s e  

' from any co p y r ig h t  v i o l a t i o n .

S ig n a tu r e Date

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



www.manaraa.com

This dissertation is dedicated to 

my wife, Weiping Lu, 

my daughter, May Hu 

and 

my parents.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



www.manaraa.com

ACKNOWLEDGMENTS

I wish to sincerely thank ray advisor, Eliezer Dekel, Professor in the Computer Sci

ence Program, for his guidance and encouragement. He is truly a good teacher who has 

had the greatest influence on me.

I also wish to thank the members of my committee, Professors Larry Ammann, Ivor 

Page, William Pervin, and Haim Schweitzer for their time, suggestions, and support.

As always, I am very grateful to my family. Specifically, I thank my wife, Weiping 

Lu and my daughter, May Hu, for their love, encouragement and endurance. I thank my 

parents, my sister, my brother, and my in-laws for their continuing support and unlimited 

careness and love. I also thank the friends of my family, Ban and Jan Capron, Dennis and 

Pat Bull, Jim and Judy Wimberley for their friendship, compassion, and prayers.

Finally, I would like to thank my friends Yuval Caspi, Jesse Chen, Mohammad 

Heydari, Tony Juang, Wen Ouyang, and Lu Tian for their concern and friendship.

June, 1992

iv

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



www.manaraa.com

Parallel Algorithms for Distributed Systems 

and Software Engineering

Publication No.____________________

Jie Hu, Ph.D.

The University of Texas at Dallas, 1992

Supervisor Professor: Eliezer Dekel

Networks, database systems, computer processes and programs are often presented 

by graphs. Parallel methods for solving graph problems provide the means of parallel 

processing for distributed systems and software engineering.

In this dissertation we present a new parallel technique for graph decomposition, 

pruning decomposition, which partitions a graph into certain disjoint structures. Using 

the pruning decomposition, we introduce the efficient methods for computing st- 

numbering, finding biconnected components and ear decomposition on the EREW P- 

RAM model of computation.

Based on these results, we give some efficient parallel algorithms for other prob

lems such as vertex location trees, strong orientation, and minimum cutset on reducible 

graphs.

V

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



www.manaraa.com

TABLE OF CONTENTS

Acknowledgment iv

Abstract y

Table of Contents vi

List of Figures viii

List of Algorithms X

Chapter 1. Introduction 1

Chapter 2. Pruning Decomposition Search 6

2.1 Introduction 6

2.2 Pruning Decomposition Search (PDS) 7

2.3 Modified Pruning Decomposition 16

Chapter 3. Biconnected Components on EREW P-RAM 2 0

3.1 Introduction 2 0

3.2 Biconnected Components on EREW P-RAM 2 1

Chapter 4. Ear Decomposition on EREW P-RAM 31

4.1 Introduction 31

4.2 NF-trees and Biconnected Certificates 33

4.3 Ear Decomposition on EREW P-RAM 39

Chapter 5. St-Numbering and Applications 43

5.1 Introduction 43

5.2 St-numbering on EREW P-RAM 44

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



www.manaraa.com

5.3 Applications of st-numbering 47

5.3.1 Bipartition of Biconnected Graphs 47

5.3.2 Centroided Trees 48

5.3.3 Centered Trees 52

5.3.4 Strong Orientation 57

Chapter 6. Minimum cutsets for Reducible Graphs 60

6.1 Introduction 60

6.2 Minimum Cutset of a Branch 63

6.3 Minimum Cutset of a Reducible Graph 63

6.4 Heuristic for Minimal Cutset of General Graphs 8 6

Chapter 7. Conclusion 92

References 95

Vita 101

vii

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



www.manaraa.com

LIST OF FIGURES

Figure 2.2.1 Graph G, spanning tree T and matrix M 7

Figure 2.2.2 Auxiliary graph of G after the first step 8

Figure 2.2.3 Auxiliary graphs of G 9

Figure 2.2.4 Computing R(b,j) for column b of M on T 15

Figure 2.2.5 Spanning forest of super leaves 16

Figure 3.2.1 Pseudo-graph of G 21

Figure 3.2.2 Finding articulation points in a branch 23

Figure 4.2.1 A biconnected graph and its NF-tree 34

Figure 4.2.2 Cases of transformation of NF-tree 35

Figure 4.2.3 Examples of a biconnected certificate 37

Figure 4.2.4 Cases of articulation points 38

Figure 4.3.1 Ear decomposition 41

Figure 5.2.1 Ears of G and Tst 45

Figure 5.3.1 Centroide tree construction 51

Figure 5.3.2 Centered tree construction 54

Figure 6.2.1 Example of redundent edges 63 .

Figure 6.2.2 Head-dependency graph 65

viii

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



www.manaraa.com

Figure 6.2.3 Construction of head-dependency graph 6 8

Figure 6.2.4 Determine a cutset of a branch 73

Figure 6.3.1 Example of branch normalizing 82

Figure 6.4.1 Cases of remaining cycles 89

ix

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



www.manaraa.com

LIST OF ALGORITHMS

Algorithm 2.2.1 Algorithm for pruning decomposition 14

Algorithm 2.3.1 Modified step of PRUMNGJDECOMPOSiriON 18

Algorithm 3.2.1 Algorithm for biconnected components 28

Algorithm 4.2.1 Algorithm for finding NF-tree 34

Algorithm 4.2.2 Algorithm for finding a biconnected certificate 37

Algorithm 4.3.1 Ear decomposition for certificate 40

Algorithm 5.2.1 Algorithm for st-numbering 46

Algorithm 5.3.2 Algorithm of centroided tree construction 49

Algorithm 5.3.3 Algorithm of centered tree construction 55

Algorithm 6.1.1 Serial algorithm for minimum cutset of reducible graphs 62

Algorithm 6.2.1 Serial algorithm for branch minimum cutset 65

Algorithm 6.2.2 Parallel algorithm for branch minimum cutset 67

Algorithm 6.2.3 Algorithm for simple branch 69

Algorithm 6.2.4 Algorithm for head-dependency graph 70

Algorithm 6.2.5 Algorithm for block cutset 71

Algorithm 6.3.1 Skeleton for minimum cutset of reducible graphs 79

Algorithm 6.3.2 Algorithm for branch normalizing 83

x

with permission of the copyright owner. Further reproduction prohibited without permission.



www.manaraa.com

Algorithm 6.3.3 Parallel algorithm for minimum cutset of reducible graphs 85 

Algorithm 6.4.1 Heuristic for minimal cutset 8 8

xi

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



www.manaraa.com

CHAPTER 1

INTRODUCTION

Distributed systems, such as communication networks, database systems, etc. are 

often presented by graphs. In software development, processes and programs are 

represented by directed graphs so that evaluation, testing, verification and compilation 

can be performed effectively. The vertices can indicate process units, the edges (with 

weight or direction) may present the relation among processes. Therefore methods for 

solving graph problems provide very useful tools for related transactions or operations of 

the distributed systems and software engineering.

To fulfill the rapidly increasing requirements of fast and massive computations, 

parallel processing is becoming a dominant theme in many areas. Different parallel com

puters have been built and are being built. Of course, some parallel computational 

models are proposed in order to study the logical structure of parallel computations. 

Among the theoretical parallel computation models the parallel random-access machine 

(P-RAM) has been proven to be an extremely useful model to pursue this study. It is 

assumed in P-RAM, in addition to the private memories of processors, there is a shared 

memory and the cells of which can be accessed by each processor in unit time.

In the P-RAM model there is the possibility of read- and write-conflicts, in which 

two or more processors try to read from or write into the same memory cell simultane

ously. Distinctions in the way these conflicts are handled lead to several different variants 

of the model. The weakest of these is the exclusive-read exclusive-write (EREW) P- 

RAM, in which concurrent reading and writing are forbidden. The strongest one is the

1

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



www.manaraa.com

concurrent-read concurrent-write (CRCW) P-RAM, in which more than one processor 

can read from or write into a same memory cell concurrently with certain conventions, 

such as only one value can be written or priorities are assign to the processors. The inter

mediate one is concurrent-read exclusive-write (CREW) P-RAM.

Theoretically the EREW P-RAM model can be simulated by CRCW model by time 

increasing by a O(logp) factor, where p  is the number of processors, by sorting the pro

cessors whenever the memory accessing conflicts occur [Vl][KR][Co]. Nevertheless, 

developing EREW algorithms is of practical interest because the inefficiency and large 

overhead of this kind of simulation. In addition, it is shown that EREW P-RAM can 

simulate most of the existing parallel computer structures [HB] and is considered to be 

the one that is closest to the existing parallel computer systems.

The P-RAM models lead the classification of problems according to their difficulty. 

The complexity for parallel computation has to include computation time and number of 

processors. For example, NC  problems are those problems which can be solved in poly- 

logrithmic time using polynomial number of processors based on the size of the prob

lems. Similarly, an NC algorithm indicates a parallel algorithm which can be performed 

in O(log^A0 time using 0(N C) processors, where k,c are constants and N  is the size of the 

problem. We refer the readers to the review by R. M. Karp and V. Ramachandran [KP] 

for more details of the parallel computation models and complexity of parallel algo

rithms.

In this dissertation, we introduce a new technique, pruning decomposition search 

(PDS), which partitions a graph into a set of subgraphs so as to provide the tools for 

parallel processing. Using PDS, some basic graph problems such as st-number

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



www.manaraa.com

numbering, biconnected components and ear decomposition can be solved on EREW P- 

RAM efficiently with very small overhead and simple data structures. Based on those 

solutions, we present efficient parallel algorithms for several other graph problems 

directly related to distributed systems, such as bipartitioning of biconnected graphs, cen- 

troided tree construction, centered tree construction, strong orientation, building bicon

nected certificate and finding minimum cutset for reducible graphs.

In the following we introduce some preliminaries that will be used in most of the 

following chapters. More definitions will be introduced in the chapters in which the 

related problems are discussed.

A graph G=(V,E) is a structure which consists of a set of vertices V={vl 5  v2,..., 

Vfj} and a set of edges E={e i, e-i,..., e^}- Each edge e is incident to a pair of vertices 

(«,v) which are not necessarily distinct. If ( m, v)  is ordered then G is a directed graph, oth

erwise G is an undirected graph. To facilitate the following discussion, we use "graph" to 

indicate undirected graph and assume | V| =N and |£| =M.

If edge e=(u,v) then u,v are endpoints of e. The degree of a vertex u is the number 

of times u is used as an endpoint

A path is a sequence of edges e \, e^,..., e^ s .t e; shares one of its endpoints with 

e,_i and the another with eI + 1  for i=2,...,k-l. A graph G=(V,E) is connected if there is 

a path between any pair of vertices of G.

A vertex is an articulation point of G if by removing it G will be disconnected. An 

edge is a bridge of G if by removing it G will be disconnected. A connected graph is 

bicormected if there is no articulation point in i t  A connected graph is 2-edge connected, 

or bridgeless, if there is no bridge in it.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



www.manaraa.com

A graph G=(V,E) is a tree if G is connected and |£|=] V|-l. A vertex u of a tree is a 

leaf if the degree of u is one, i.e., there is only one edge incident to it.

A graph G'=(V,E') is a subgraph of G=(V,E) if V q V and E'aE. A subgraph of G 

which contains all of its vertices and is a tree is called a spanning tree of G.

We refer the readers to the book "Graph Algorithms" by S. Even [E] for more graph 

concepts and definitions.

This dissertation is organized as following:

In Chapter 2 we introduce the pruning decomposition search (PDS). The decompo

sition can be achieved in O(log2 A0 time using N 2AogN processors on an EREW P-RAM. 

We also present a modified version of PDS in which the spanning tree construction is the 

only step that needs 0(log2 iV) time, while all the other steps run in O(logA0 time. This 

implies for graphs in which the spanning trees can be found efficiently, the PDS has even 

better performance. The PDS is applied for solving most of the problems in this disserta

tion.

In Chapter 3 we present an efficient EREW algorithm for finding biconnected com

ponents of graphs in O(logiV) time using N 2AogN processors based on the information 

from the PDS. The 2-edge connected components can be found efficiently as well using 

the similar method.

In Chapter 4 we give a new method for finding biconnected certificates based on 

NF-trees. Then we derive an efficient EREW algorithm for ear decomposition in O(logiV) 

time using N 2AogN processors based on the information from the PDS.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



www.manaraa.com

5

In Chapter 5 we first introduce an EREW algorithm for finding an st-numbering for 

biconnected graphs which can be performed in O(logA0 time using N  processors based on 

the results of the ear decomposition. From the obtained st-numbering we describe 

efficient parallel algorithms for biconnected graph bipartitioning, centroided tree and 

centered tree constructions and strong orientations on P-RAM.

In Chapter 6  we present an EREW algorithm for finding a minimum cutset of redu

cible graphs. The pruning decomposition search is applied to directed graphs here. A 

heuristic for finding a minimal cutset of general graphs is introduced too. They can be 

found in 0(log3 iV) time using 0(N 3AogN) processors on an EREW P-RAM.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



www.manaraa.com

CHAPTER 2

PRUNING DECOMPOSITION SEARCH

2.1 Introduction

Problem decomposition is a key to several algorithmic techniques. Methods of 

decomposition have the same basic feature. They break apart a complex structure of a 

given combinatorial object into smaller and simpler components. These simpler com

ponents are then processed in parallel to produce an efficient solution to the problem. 

Considerable effort in developing decomposition methods is reported in the literature. 

Many graph decompositions have been introduced for different types of graphs on dif

ferent models of parallel machines. For example, ear decomposition is for biconnected 

graphs on CRCW or CREW P-RAM [MSV], tree contraction [GMT][DNP][KR] and the 

centoid decomposition [CV2] are for tree decompositions on EREW P-RAM.

In this chapter we introduce pruning decomposition, a new graph decomposition, 

for general graphs on EREW P-RAM. Pruning decomposition partitions a graph of N  ver

tices into K<logN auxiliary graphs. Each of these auxiliary graphs consists of some sim

ple structured components. The iterative nature of the pruning decomposition has the 

flavor of a general search technique in graphs ( undirect and directed ). It arranges the 

vertices of the graph by partitioning them into ordered sets of "chains". In this context we 

refer to the technique as pruning decomposition search (PDS). We demonstrate the utility 

of the PDS by developing several efficient EREW algorithms. Some of them are finding 

biconnected components of graphs[DHl], ear decomposition and st-numbering for bicon-

6

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



www.manaraa.com

7

nected graphs[DH3][DH4] and minimum cutset for reducible graphs [DH5]. These will 

be presented in the following chapters of this dissertation.

In the following, section 2.2 we introduce the pruning decomposition and describe 

the structure of the auxiliary graphs. We also present the parallel implementation of 

pruning decomposition. In section 2.3 we modify the pruning decomposition such that 

all the steps can be performed in 0(logA/) time using N 2AogN processors except the con

struction of the spanning tree. This modified version can be applied to problems for 

which the spanning tree can be efficiently found on the EREW P-RAM.

2.2 Pruning Decomposition of Graphs

As we mentioned in the introduction, decomposition methods partition a problem so 

as to handle it in parallel. The pruning decomposition partitions the graph into branches 

(to be defined). It consists of three steps. In the following, we give the description of 

these three steps, and then present our parallel decomposition algorithm.

 tree edges

a> b d e f g h i j s t
a 0 1 0 0 0 0 0 0 1 1 1
b 1 0 0 0 0 0 0 0 0 1 0
d 0 0 0 1 1 1 1 0 0 1 0
e 0 0 1 0 1 0  0 0 0 1 0
f 0 0 1 1 0 1 0 0 0 0 0
g 0 0 1 0 1 0 1 1 0 0 1
h 0 0 1 0 0 1 0 1 1 0 0
1 0 0 0 0 0 1 1 0 1 0 0
j 1 0 0 0 0 0 1 1 0 0 1
s 1 1 1 1 0 0 0 0 0 0 0
t 1 0 0 0 0 1 0 0 1 0 0

Figure 2.2.1 Graph G, spanning tree T and matrix M

Consider a rooted spanning tree T of an undirected graph G (Fig. 2.2.1). We define 

an active chain to be the longest subpath on the path from a leaf vertex to the root of T,

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



www.manaraa.com

starting from the leaf and including only vertices with degree two or less ( the root of the 

tree is included only if its degree is one or less ). The root o f the chain is the end of the 

chain that is not the leaf. For a given tree T, we can find m active chains if there are m 

leaves. The first step of the decomposition is to move those active chains to an auxiliary 

graph, namely, "prune". The remaining tree has some new leaves generated, from which 

the new active chains can be found and moved to another auxiliary graph. We say a ver

tex is activated (hence a chain vertex) when it is moved to an auxiliary graph. These 

iterative steps terminate once the root of the tree becomes active. Each auxiliary graph A; 

(generated in the i th iteration) consists of some active chains. Obviously every vertex is 

activated exactly once. Actually this step partitions Tinto several sets of chains.

It is instructive to follow the decomposition with an example. Figure 2.2.1 gives an 

undirected graph G, its spanning tree T  with root t  and its adjacency matrix M. Figure

2.2.2 shows the results of the first step: auxiliary graph A i with five chains, A 2  with two 

chains a - s , j  and A 3  with one chain t.

© ©

A3
I

Figure 2.2.2 Auxiliary graphs of G after the first step

In the second step we augment the information in the auxiliary graphs by adding 

"super leaves" (to be defined) to the chains. Let v be a chain vertex and u be a child of v 

in the spanning tree T. Vertex u was a root of an active chain in a previous iteration. We 

attach u to v as a super leaf. This super leaf represents the vertex set of the subtree of T

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



www.manaraa.com

rooted at u. The auxiliary graphs A,-’s of our example together with the new super leaves 

are presented in Fig.2.2.3: super leaves b,e,d,i,h are added into A 2  and a,j are added into 

A 3 . In the following discussion we say that vertex x is a member of u, x e u  (x is 

represented by u), if x is a descendant of u in T. Obviously there are no super leaves in

To complete our pruning decomposition, we need to add the edges among the ver

tices of every chain in the auxiliary graphs (including chain vertices and super leaves). 

This is done in the third and last step of the decomposition. We add the following edges:

•  Add (w,iv) if there is a non-tree edge (x,y) of T  s.t. xeu , yevv and u,w are super 

leaves of the same chain;

•  Add (m, v) if there is a non-tree edge (x, v) of T  s.t. xe  u and v is a chain vertex;

•  Add (m,v) if u,v are chain vertices and (m,v) is a non-tree edge (i.e., a forward edge 

of T  whose both endpoints are chain vertices of a same chain).

A chain augmented with super leaves and the above edges is referred to as a branch, 

and the root of the chain is referred to as the root o f branch. In our discussion, we say 

that edge (x,y) is represented by edge («,v) if xgm and ye  v, edge (x,y) is represented by 

(x,m) if x is a chain vertex and yew or (x,y) is represented by itself when x,y are both

chain
node

Figure 2.2.3 Auxiliary graphs of G

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



www.manaraa.com

chain vertices. The branches that are created as a result of the pruning decomposition 

have enough information in them of the original graph to allow parallel computation. 

Various operations that are based on the pruning decomposition require some additional 

information. To that end, we classify the edges of the branch. Consider the relation just 

among the super leaves of a branch, some of them are connected. We define a pile to be a 

set of super leaves that are connected to each other in a branch. In the following, a pile is 

denoted by p u if u is the vertex with the largest label in the pile (assume the vertices are 

labeled in postorder of the spanning tree 7). Let bw be a branch with root w', a pile pu of 

bw is local if there is no edge (x,y) of G s.t. x  is in p u and and y  is not in bw. Otherwise 

the pile is non-local. In our example in A 2  of Fig.2.2.3, Pd consisting of e,d is a non

local pile because (d,g)e G has depd  but g & ba. Clearly, pb is a local pile of ba.

Furthermore, the edges of a branch can be partitioned into:

•  Chain edges (the endpoints of the edges are chain vertices, e.g., (a,s) of A 2  in 

- Fig.2.2.3);

•  Edges between non-local piles and chain vertices (e.g., (e,s) of A 2  in Fig.2.2.3);

•  Edges between local piles and chain vertices (e.g., (a,b) of A 2  in Fig.2.2.3);

This classification provides more information to the pruning decomposition for vari

ous applications. In addition, this decomposition can partition the edges of G into tree 

edges, forward edges and cross edges according to the spanning tree T. An edge (x,y) is a 

cross edge iff its representative is either (1 ) an edge between two chain leaves u and v s.t 

x eu , yev , or (2) an edge (x,u) s .t x  and u are not descendant to each other. Edges that 

are neither tree edges (part of the spanning tree), nor cross edges are forward edges. 

Therefore every edge of G can be identified as tree edge, cross edge or forward edge.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



www.manaraa.com

11

This information may allow some other applications for pruning decomposition [DH5]. 

Before presenting the parallel algorithm for the pruning decomposition, we need to prove 

some properties of the pruning decomposition.

Lemma 2.2.1: The total number of auxiliary graphs is no more than loglV, where N  is the 

number of vertices in G.

Proof: In an arbitrary tree T, if vertex v is the only child of vertex u then we say vertices 

u,v are in a same chain (this relation is transitive). A chain is active if it contains a leaf (it 

is exactly the definition of active chain in pruning decomposition) and is otherwise 

non-active. In the process of pruning decomposition, vertices on the same chain are on 

the same active chain in some iteration. Hence representing a non-active chain by one 

vertex will not change the number of iterations. Reduce T  into T  by replacing each chain 

by a vertex so that every internal vertex of T  has at least two children, the number of 

leaves (i.e., the active chains) in T  is at least half of the vertices. This implies the total 

number of iterations is bounded by logN.O

Lemma 2.2.2: Every edge of G is represented in the auxiliary graphs exactly once.

Proof: We prove this lemma by considering the type of edges based on the spanning tree 

T  of G.

Case 1: edge (k , v ) is a tree edge of T. Without lost of generality, let v be the child of u in 

T. If u,v are in the same active chain, then edge ( m, v )  is a chain edge which is 

represented by itself in the auxiliary graph where u is a chain vertex. If v is activated 

before u then v must be a root of a branch, hence v is a super leaf where u is a chain ver

tex. Edge ( m, v ) is represented only in the auxiliary graph that is created when u is

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



www.manaraa.com

12

activated.

Case 2: edge (u,v) is a forward edge of T. Without lost of generality, let v be the descen

dant of u in T. If u,v are in the same active chain, then similar to the case 1, (u,v) is 

represented by itself when u,v are chain vertices. If v is activated before u, then (w,v) is 

represented by (u,w) where w is the child of u and w is an ancestor of v. Edge (u,w) is in 

the auxiliary graph where u is a chain vertex. Hence (m ,v )  is represented only in the auxi

liary graph where u is a chain vertex.

Case 3: edge (u,v) is a cross edge of T. We know that the representing edge for (u,v) is 

added only when u,v belong to the same branch. Let w be the lowest common ancestor of 

u and v in T. Consider the iteration when the representing edge of (w,v) is added in, if u is 

a chain vertex then («,v) is represented by (u,x) where x  is the child of w and x  is an 

ancestor of v. If v is a chain vertex the (u,v) is represented by (y,v) where y  is the child of 

w and y is an ancestor of u. If none of u,v are chain vertices then ( m, v )  is represented by 

Qc, y) where x,y are children of w, u is a descendant of x  and v is a descendant of y. It is 

impossible for u and v be both chain vertices in a same chain since («,v) is a cross edge. 

So ( m, v )  is represented only when the lowest common ancestor of u,v is activated.

Notice that every vertex of G is activated (i.e., to be a chain vertex) exactly once. 

Every edge of G is represented exactly once since it is represented only when certain ver

tex is an activated chain vertex.D

We are now ready to describe our parallel implementation of pruning decomposi

tion, Algorithm 2.2.1. In step 1 of PRUNING_DECOMPOSmON, we construct a span

ning tree of the input graph. This can be done in 0(log2AO time using N 2AogN proces

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



www.manaraa.com

13

sors on EREW P-RAM [NM]. The postorder of Tin step 2 can be computed in 0(log/V) 

time using NAogN  processors on EREW [TV][KR].

Step 4 constructs the auxiliary graphs consisting of chain vertices and super leaves. 

Let N[ be the number of chain vertices in A-t and 5,- be the number of super leaves in A,-. 

We know . Therefore step 4.1.2 can be done in O(logA^) time using NiAogN-,

processors and step 4.1.3 can be performed in 0(1) time using A/,_i processors or in 

0(logN;_i) time using N;_i /logV,_i processors. By Lemma 2.2.1, there are at most logAT 

iterations, step 4.1 runs in 0(log2N) time using NAogN processors on EREW P-RAM. 

Step 4.2 finds all the representing edges. This is done by using the information in adja

cency matrix M. By the definition of the adjacency matrix, element a ( i j )  of M indicates 

there is an edge between vertices i and j  in G. We construct a matrix M ! with element 

R (i , j) s.t/? (i,j)=1 if there exists an element a (i,x)=1, where x  is a descendant of j  in T,

i.e., R (i ,j) indicates that there is an edge between vertex i and the subtree of T  with root 

j, Tj. The matrix M i indicates the relation between every vertex and every subtree of T. 

We can compute R (i , j) for column i of M on T by Euler Tour technique [TV]. Using our 

example graph of Fig.2.2.1, computing R (b,j) for column b by T  is illustrated in 

Fig.2.2.4. In the example, a(b,s)=1 and a(b,a)=1 in M, then R(bys)=1, R(bya)=l and 

R (b,t)=1 This can be done in O(logAT) time using NAogN processors on EREW P-RAM 

using Euler Tour technique [TV]. To obtain R ( i j ) ’s for all the columns of M i we need 

W2/logW processors. We perform the similar computations for each row of M \ and keep 

the results in M 2  in which element R (i,j)=1 means there is an edge between vertices of 

7} and Tj. Now we can add representing edges into auxiliary graphs from the informa

tion in M \ and M 2 . Consider a branch of A,-, if i is a chain vertex, j  is a super leaf and

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



www.manaraa.com

14

Procedure PRUNING_DECOMPOSITION(G)
{Input. An undirected graph G=(V,E) represented by an N xN  adjacency matrix M,
AHV|;
Output A set of auxiliary graphs A,-, l<i<K, where K<log N}
1. Construct a rooted spanning tree T of G. {Any vertex can be the root.}
2. Relabel the vertices by the postorder of T  and arrange M according to the new label;
3. { Initialization }

3.1 Torg < T;
3.2 i<-0;

4. { Construct the auxiliary graphs iteratively.}
4.1 Repeat

4.1.1 i<—i+1;
4.1.2 find all the active chains and move them from T  to A,-;
4.1.3 add super leaves for each chain of A,-; 

until Fis empty;
4.2 Add representing edges for A,’s; {complete branch construction }
4.3 K<—i; { K auxiliary graphs are formed}

5. { Find all the piles.}
5.1 Construct G/=(V/, E{) where

Vjr={3tj xsA i for some i};
2s/={(x,y)| (3t,y)eA/ for some i and 3c,ye V}};

5.2 find a spanning forest F/ of G/;
{ Every spanning tree of the super leaves indicates a pile.}

6. for i=l to K do {Identify the type of piles and type of edges for each branch.}
for each branch bw with root w of Af in parallel do

6.1 for each super leaf u of bw in parallel do
u is non-local if there is an edge (x,y) in G s .t xew and y is not a des
cendant of w in Torg, otherwise u is local;

6.2 for each pile of bw in parallel do
the pile is non-local if there is a u in the pile is non-local, otherwise the 
pile is local;

6.3 classify the edges of the branch;
end;{ PRUNING_DECOMPOSmON }

Algorithm 2.2.1. Algorithm for pruning decomposition

b(i,j)=l in M i, then add representing edge ( i j )  because there is an edge between vertex

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



www.manaraa.com

15

i and 7) in G. Similarly, if i, j  are super leaves and c (i,j)=1 in M2, add representing 

edge So step 4.2 runs in 0(logA/) time using N 2AogN processors and hence step 4 

can be done in O(log2A0 time using N 2AogN processors on EREW P-RAM.

Notice that if a super leaf u appears in At, then u must be the root of a branch in 

A,-_j. This means the chain leaves of all the auxiliary graphs are disjoint and so are the 

representing edges. There is no conflict in generating a graph G/ that consists only the 

super leaves of all the auxiliary graphs and the edges among the super leaves in step 5.1 

(Fig 2.2.5). In the spanning forest F[ of G/ that is found in step 5.2, every set of con

nected chain leaves (or every spanning tree in F/) is a pile. For our example, F/ is the 

same as G/, we can see that there are four piles Pb, Pd, Ph and pj (Fig.2.2.5). The com

plexity of step 5 is dominated by the spanning forest construction, which can be found in 

O(log2A0 time using N 2AogN PE’s on EREW [NM].

Step 6 has K<logN iterations. In the i th iteration, 6.1 and 6.2 can be performed 

based on the matrices Mj and M 2 Applying step 6 on our example, pj and Pb are found 

to be local piles while the rest are non-local piles. This can be done in 0(logN) time 

using N 2AogN PE’s on EREW P-RAM. As long as we have the information of chain

R(b,t)=0 R(b,t)=l

R(b,s)=l
V) R(b.h)=0R(b,b)=0 (b

R(b,i)=0

R(b,e)=0 V? R(b,g)=0
R(b.d)=0

V ) R(b,h)=0
R(b.i)=0

R(b.c)=0 (e R(b,g)=0
R(b,d)=0

R(b.Q=0 R(b.f)=0

Figure 2.2.4 Computing R (b ,j) for column b of M on T

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



www.manaraa.com

16

vertices, super leaves, piles (local or non-local) and F/, the classification of edges can be 

performed in 0(1) time using N 2 PE’s or in O(loglV) time using N2AogN PE’s. There

fore step 6 can be done in O(loglV) time using N 2AogN PE’s on EREW.

In conclusion, the pruning decomposition of a given graph with N  vertices can be 

achieved in 0(log2N) time using N 2AogN PE’s on EREW P-RAM based on the tree and 

matrix data manipulations. This decomposition partitions an undirected graph into a set 

of auxiliary graphs, each of them consists of some branches which contains information 

about edges among the set of vertices the branch represents. This information can be 

utilized in obtaining efficient parallel solution for many graph problems.

2.3 Modified Pruning Decomposition

In the first step (step 4.1.2 of Algorithm 2.2.1) of the pruning decomposition 

described in previous section, we found the longest chain from each leaf. This is required 

for solutions of some graph problems (DH5][HHTJ. A more efficient version of pruning 

decomposition can be obtained when the chain does not necessarily have to be the long

est possible. In this decomposition, the construction of the spanning tree dominates the 

complexity, while all the other steps can be done in 0(logAO time using N 2AogN proces

sors on EREW P-RAM. Hence in graphs for which’a spanning tree can be found 

efficiently on EREW P-RAM (such as planar graphs, serial parallel graphs, directed

<S> o —̂
Figure 2.2.5 Spanning forest of super leaves

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



www.manaraa.com

17

acyclic graphs, etc.), the pruning decomposition can be obtained much faster. Utilizing 

this modified pruning decomposition, many problems on those graphs can be solved 

efficiently. For exarqple, st-numbering [DH1], ear decomposition [DH3], biconnected 

components [DH2], bipartition of biconnected graphs and node location tree construc

tions [DH3] and centroid tree (median tree) construction of trees [CDH].

The main change here is to use the iterative operations of COMPRESS and RAKE 

of the tree contraction [NDP][KR] on the spanning tree T  of given graph G. In tree con

traction, operation RAKE removes all the leaves from the tree. Here we move the leaves 

from T  to an auxiliary graph A;, if it is in the i th iteration. As we know, a leaf that is 

moved by RAKE is actually a chain. This chain was compressed into a node by previous 

COMPRESS operations. We define DECOMPRESS to be an operation that recovers the 

chain from the node by simply tracing COMPRESS’S back. Performing DECOMPRESS 

for the leaves moved into the auxiliary graphs will not change the complexity of tree con

traction. We use these recovered chains as the chains of the auxiliary graphs and add 

super leaves and edges to form the branches of the auxiliary graphs as described in previ

ous section. The only difference now is the chains of the branches are not necessary the 

longest chains from the leaves. In tree contraction there are O(logiV) operations of 

COMPRESS (therefore 0(logW) DECOMPRESS’s) and K=O(logA0 iterations (i.e., K

auxiliary graphs). Let N{ be the number chain vertices in A,*, Di be the number of

K
DECOMPRESS’s in A,-. From the property of tree contraction, we have ]£D,-=O(logA0.

i=l

The algorithm of this modified pruning decomposition is derived from the pro

cedure PRUMNG_DECOMPOSmON (Algorithm 2.2.1). The only change is in the

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



www.manaraa.com

18

Modified Step 4
4. {Construct the auxiliary graphs}

4.1 Repeat
4.1.1 i<—i+1;
4.1.2 COMPRESS;
4.1.3 move the leaves to A;; {modified RAKE}
4.1.4 DECOMPRESS; {obtain chains}
4.1.5 add super leaves for each chain of A,-;

Until T  is empty;
4.2 Add representing edges for A,-; {complete branch construction}
4.3 K<-i; {K=O(logA0 auxiliary graphs}

Figure 2.3.1 Modified step 4 of PRUNING_DECOMPOSITION

construction of auxiliary graphs (step 4 of Algorithm 2.2.1). Replacing step 4 of Algo

rithm 2.2.1 by modified step 4 (Fig.2.3.1) gives the implementation of modified pruning 

decomposition.

It is easy to see that the modified step 4 of pruning decomposition can be computed 

in O(logiV) time using N 2AogN  processors on EREW P-RAM. Step 4.1.1-4.1.3 is tree 

contraction which can be obtained in O(logA0 time using NAogN processors on EREW 

P-RAM[GMT] [NDP] [KR]. Step 4.1.4, DECOMPRESS takes 0 (A ) using ty /logA  pro

cessors, step 4.1.5 can be done in 0(1) time using at most A  processors. We know 

K
]£A=0(logAO. Step 4.2 can be achieved in 0(logAO time using N 2Aogfl processors on 
l

EREW P-RAM as discussed in the previous section.

The algorithm of modified pruning decomposition is dominated by spanning tree 

construction ( step 1 and step 5 of Algorithm 2.2.1). All the other steps can be achieved 

in 0(logAO time using N zAogJN processors. For the graphs whose spanning tree can be

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



www.manaraa.com

found efficiently, the pruning decomposition can be obtained faster. When a graph is a 

tree, no spanning tree needs to be constructed and no representing edges need to be 

updated, the pruning decomposition can be done in 0(logN) time using O(N) processors 

on EREW P-RAM.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



www.manaraa.com

CHAPTER 3

BICONNECTED COMPONENTS ON EREW P-RAM

3.1 Introduction

A biconnected component of a graph is a maximal subgraph that contains no articu

lation points. Finding all the biconnected components (and finding all the articulation 

points) of a graph is a basic problem in graph theory and is used very often for many 

graph problems. The sequential algorithm to find the articulation points is based on depth 

first search (DFS) which has time complexity 0(M)[E] where M  is the number of edges. 

The parallel algorithm on CRCW P-RAM takes 0(loglV) time using M+N  PE’s[TV] 

where N  is the number of vertices of the graph. This algorithm can be improved to 

O(logN) time using (M +N)a(M,N)AogN processors on CRCW, where a  is the inverse 

Ackermann function [KR]. On CREW this can be done in O(log2A0 time using 

0(iVpV/log2lV|) PE’s[TC] or 0(N 2/p) time using p  PE’s[TV] where p<N2Aog2N. On 

EREW P-RAM this problem can be done by transitive closure where 0(N 3AogN) PE’s 

are required [DNS][H].

In this chapter we present a method based on the pruning decomposition that finds 

all the articulation points and biconnected components on EREW P-RAM with very 

small overhead and simple data structure. Our algorithm can be done in 0(logA/) time 

using N 2AogN processors on EREW P-RAM based on the results of pruning decomposi

tion. We present this algorithm in next section. To facilitate the discussion, we consider 

only connected graphs in the following. For the case that a graph is not connected, each

20

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



www.manaraa.com

21

connected component can be treated as a connected subgraph on which our algorithm can 

be applied.

3.2 Biconnected Components on EREW P-RAM

We first introduce the idea of how our algorithm finds the biconnected components 

based on the pruning decomposition and then proceed to discuss the details of the parallel 

implementation.

Let BC be the set of biconnected components and AP be the set of articulation 

points of graph G. A pseudo -graph Gps can be derived from G in the following way:

1. Every biconnected component BC is a node in Gps;

2. Two biconnected components 2?,- and Bj are "connected" by a vertex u if ueB it 

ueB j and u<=AP.

Figure 3.2.1 shows an example of pseudo-graph Gps of G. Notice that Gps has a 

structure similar to a tree. A biconnected component B is a pendant if it contains only 

one articulation point (we define this articulation point the anchor of the biconnected

c

Figure 3.2.1 Pseudo-graph of G

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



www.manaraa.com

22

component). There must be some pendants in any Gps according to the tree like structure. 

If we remove the pendants (except the articulation points which are contained in the 

non-pendants also), some new pendants will be generated in the remaining part of Gps. 

The strategy that keeps finding and removing the pendants makes every B a pendant 

exactly once and leads us to a method which can be modified into a parallel algorithm for 

finding the biconnected components of a graph. Clearly every biconnected component 

has exact one anchor, except the last remained biconnected component.

We are using the results of the pruning decomposition to perform this strategy. For 

the purpose of finding biconnected components, we need to define some more terms 

related to the auxiliary graphs of pruning decomposition for further presentation. In a 

branch bw, a chain vertex u is non-local if u can reach out of bw (i.e., a vertex v that is 

not a descendant of w in T) without passing the parent of u. Otherwise u is local. A super 

leaf u is attached to a chain vertex x  if there is an edge (x,u) in the auxiliary graph. Simi

larly, a chain vertex x  is attached by a pile if there is a super leaf attaches to x  belongs to 

the pile. Let max(pu) (min(pu)) be the largest (smallest) chain vertex attached by pu. A 

chain vertex x  is internal to pu if max (pu)>x >min (pu).

We proceed to show that the articulation points can be found locally in the branches 

of the auxiliary graphs from the pruning decomposition of G.

Consider a branch of an auxiliary graph (Fig.3.2.2). There are some local and non

local piles attach to the chain vertices. Assume the vertices are labeled in postorder of T. 

We have the following observations:

1. If a chain vertex u is non-local and chain vertex x>u, then x  is also non-local (in 

Fig.3.2.2, vertex 7 is nonlocal because vertex 6 is nonlocal).

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



www.manaraa.com

23

Figure 3.2.2 Finding articulation points in a  branch

2. If a local pile pu attaches only to one chain vertex x, i.e., max(pu)=x=min (pu), x  is 

an articulation point (called type I  articulation point) that separates the vertices 

belong to p u from other vertices (in Fig.3.2.2, vertex 1,6 are type I articulation 

points).

3 If a local chain vertex (or the smallest non-local chain vertex but not the smallest 

chain vertex) x  is not internal to any of local piles, than x  is an articulation point 

(called type II articulation point) that separates its parent from its children (in 

Fig.3.2.2, vertices 4,5 and 6 are type II articulation points).

Lemma 3.2.1: A vertex u is an articulation point of G iff u is identified in a branch as an

articulation point of type I or type It.

Proof:

"=>": If u is an articulation point of G, u must separate its parent v from one of its chil

dren x. In the branch where u is a chain vertex, we have the following cases:

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



www.manaraa.com

24

Case 1: both u and x  are chain vertices of the branch. Because u separates v and x, there 

is no pile (or forward edge) that attaches chain vertices larger than u and smaller than u,

i.e., u is not internal to any local pile (or forward edge). It is identified as a type II articu

lation point.

Case 2: u is a chain vertex but x  is a super leaf which belongs to a local pile py. If py 

attaches only to u then u is identified as a type I articulation point. If py attaches to other 

chain vertices, since v cannot reach x  without passing u, u must be either max(py) or 

min(py). Therefore u is not internal to any other local pile. It is identified as an articula

tion point of type n.

Case 3: u is the root of the branch. If x  is a chain vertex, then u is either a local or the 

smallest non-local chain vertex. It cannot be internal to any pile or forward edge since it 

is the root of the branch. Hence it is identified as an articulation point of type II. If x  is a 

super leaf, it belongs to some local pile py. Similar to case 1 and 2, u is identified as an 

articulation point of type I or type n.

"<==": Trivial. □

Consider a branch without any of the local piles that attach to only one chain vertex. 

If there is no type II articulation point then all the chain vertices belong to a same bicon

nected component, because no chain vertices can separate the chain. Therefore all the 

vertices of super leaves belong to the same biconnected component. If there are some 

type II articulation points, let x  be the largest type II articulation point Because x  

separates the upper part of the branch from the lower part of the branch and there are no 

type II articulation point greater than x, all the chain vertices that are not smaller than x

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



www.manaraa.com

25

and all piles attach only to those chain vertices belong to a same biconnected component. 

All the other vertices of the branch are of other biconnected components. If we remove 

those vertices of other biconnected component, w will represent vertices of a same bicon

nected component in some auxiliary graph later (defined to be purified super leaf), such 

as i,j, 7 and 8 will be represented by purified super leaf 8. Since the root of the branch is 

never removed and all the removed vertices are either local chain vertices or of local 

piles, the structure of all the branches will not change.

We proceed to discuss how to identify biconnected components locally in a branch.

Given a branch of with all the super leaves "purified". We have:

1. If u is a type I articulation point and px is a local pile that attaches only to u, then 

vertices of px and u belong to a same biconnected component (such as a, b and ver

tex 1 of Fig.3.2.2). According to the property of purified super leaf, there are no 

other vertices belong to this biconnected component. It is a biconnected component 

of type I  and u is its anchor.

2. If u be a type II articulation point and v be the greatest chain vertex that is smaller 

than u and is not internal to any of the local piles (such as 4 and 1 in Fig.3.2.2). All 

the chain vertices between u and v (including u and v) and local piles attached to 

those vertices are of a same biconnected component (such as 1 ,2 ,3 ,4 , c, d, e and g 

in Fig.3.2.2). By the property of purified super leaf, it is a biconnected component 

of type II  and u is its anchor.

Lemma 3.2.2: A subgraph B=(Vb,Eb) is a biconnected component of G iff Vg is 

identified as a biconnected component in some branch.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



www.manaraa.com

26

Proof:

"==>:" Let £  be a biconnected component of G and u be its anchor. By the structure of 

Gps, the anchor of £  has the greatest preorder among the vertices of B. Hence every ver

tex of B is either a chain vertex or belongs to some super leaf in the branch where u is a 

chain vertex. Here we have two cases:

Case 1: u is the only vertex of B that is a chain vertex of the branch, while all the other 

vertices of B are represented by some super leaves. Since £  is a connected component, 

those super leaves belong to pile py. Since £  is biconnected maximally, py is local. Obvi

ously py attaches only to u and u is a type I articulation point By the discussion above, 

all the vertices of £  belong to py(j{u} and py(j{u} contains only vertices of £. It is 

identified as a type I biconnected component in this branch.

Case 2: there are some vertices other than u of £  are chain vertices of the branch. Let v 

be the smallest vertex of £  that is also a chain vertex. Every chain vertex between v and u 

is internal to some local piles or forward edges, otherwise v and u can be separated by 

that vertex. Chain vertex v is not internal to any local pile or forward edge because (1) If 

v is the smallest vertex of the branch then it is not internal to any local piles, (2) if v has a 

child x  that is also a chain vertex then v is not internal to any local piles, otherwise x  

belongs to £  and x  <v, which contradicts the assumption. Therefore v is the greatest chain 

vertex that is smaller than u and is not internal to any local piles. Every vertex of £  is 

either a chain vertex between u and v or belong to some local pile that attaches to those 

vertices. By the property of purified super leaf, £  is identified as a type II biconnected 

component in this branch.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



www.manaraa.com

27

Trivial.□

Since the articulation points and biconnected components can be found locally in 

branches, we are ready to present our method to find articulation points and biconnected 

components of graph G based on the pruning decomposition. The parallel implementa

tion of our method is shown in Algorithm BI_COMPONENTS (Algorithm 3.2.1).

The inputs of the BI_COMPONENTS, Algorithm 3.2.1, are the results of the prun

ing decomposition. Initially, the set of articulation points AP and the set of biconnected 

components BC are empty. The algorithm works locally on each branch. The iterative 

strategy of pseudo graph Gps can be performed without iterations since the pruning 

decomposition gives the disjoint branches.

Step 2 through step 5 can be done based on the matrices M, M i and M 2 from the 

pruning decomposition. The operations involve OR, maximum finding, minimum finding 

and deleting on rows or on columns. These can be performed in OfloglV) time using 

N 2AogN processors on EREW P-RAM.

Step 6 identifies the articulation points and biconnected components locally on each 

branch. In step 6.1, the type I articulation points and biconnected components can be 

found in 0(1) time using N  processors. Step 6 can obtains all the type II articulation 

points in 0(1) time using N  processors. In step 6.3.1, the greatest nonjntemal vertex can 

be found by partial sum which can be achieved in OQogA^) time using A^/logA^ proces

sors, where A/j, is the number of chain vertices of the branch. Hence it can be achieved in 

0(logAO time using NAogN processors for all the branches. The rest of step 6.3 can be 

done in O(loglV) time using N 2AogN processors on EREW P-RAM. Therefore the whole

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



www.manaraa.com

28

Algorithm BI COMPONENTS:
{Input. Results of pruning decomposition;
Output. Set of articulation points AC  and set of biconnected component BC.}
1. { Initialization }

AP<-0; BC<-0;
2. Find max(pu) and ran (pu) for each local pile pu;
3. Mark chain vertices that are internal to some local piles or forward edge;
4. Identify "non_local" chain vertices;
5. "Purifying" super leaves;
6. { Find articulation points and biconnected components }

For each branch in parallel do
6.1 { Identify type I articulation points and biconnected components }

For each local pilepu with max(pu)=min (pu) in parallel d
6.1.1 AP<r-APv{ max (pu)};
6.1.2 S<r-pu}J{max (pu)};
6.1.3 BC<—2?CU{S};

6.2 Identify type II articulation points and add them into AP;
6.3 { Identify type II biconnected components }

For each type II articulation point u in parallel do
6.3.1 v<—max{x | x<u is a nonjntemal chain vertex};
6.3.2 A<-{x | v<x<u and x  is a chain vertex};
6.3.3 B<r- {x j x  belongs to a pile that attaches only to a vertex of A };
6.3.4 C<-AuB;
6.3.5 BC<t-BCkjC;

end;

Algorithm 3.2.1 Algorithm for biconnected components

algorithm can be done in O(logAT) time using N 2AogN processors on EREW P-RAM.

Theorem 3.2.1: Algorithm BI_COMPONENTS (Algorithm 3.2.1) finds all the bicon

nected components of G in 0(logN) time using N 2AogN processors on EREW P-RAM.

Proof: Follows by Lemma 3.2.1, Lemma 3.2.2 and the complexity analysis of the algo- 

rithm.D

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



www.manaraa.com

29

As an extension of this result, bridges and 2-edge connected components of an 

undirected graph G can be found with the same complexity.

Notice the facts that every bridge of G must be a tree edge of T  and the end point of 

a bridge must be either an articulation point or a vertex of degree one. So we can focus 

on just tree edges, articulation points, leaf and root of T. If both the end points of a 

bridge are activated in the same iteration, i.e., they are adjacent chain vertices then they 

cannot reach each other without passing the bridge. If the endpoints are activated in dif

ferent iteration, then the bridge is represented by an only edge between a local pile con

taining only one super leaf and a chain vertex. Therefore according to the algorithm 

BI_COMPONENTS (Algorithm 3.2.1), if a chain vertex u is identified as a type I articu

lation point by step 6.1, let the super leaf attaches to u is v (i.e., v is a child of u in T), 

then (u,v) is a bridge when v is a type II articulation point in the branch with root v. If a 

chain vertex u is a type II articulation point and in step 5.3.1 v is the only child of u in T, 

then ( m, v ) is a bridge when v is also a type II articulation point and no pile attaches to 

both u and v. Obviously adding these operations into the algorithm will not change the 

complexity. Moreover, if we delete all the bridges from the graph, every connected com

ponent will be a 2-edge connected component So all the bridges and 2-edge connected 

components of G can be found in O(logiV) time using N 2AogN PE’s on EREW P-RAM 

based on the pruning decomposition.

We have shown that all the articulation points, bridges, biconnected components 

and 2-edge connected components can be found efficiently on EREW P-RAM based on 

the pruning decomposition. Since the complexity of pruning decomposition is dominated 

by the spanning tree construction, our algorithm is particularly good for graphs where the

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



www.manaraa.com

spanning tree can be constructed efficiently on EREW P-RAM.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



www.manaraa.com

CHAPTER 4

EAR DECOMPOSITION ON EREW P-RAM

4.1 Introduction

An ear decomposition D=[jPo,jPi,...,/>r_i] of an undirected graph G=(V,E) is a parti

tion of E into an ordered collection of edge-disjoint simple paths P o,P i,...Pr- \ called 

ears, such that P o is a simple cycle, and for i>0, Pi is a simple path (possibly a simple 

cycle) with each endpoint belonging to a smaller numbered ear, and with no internal ver

tices belonging to smaller numbered ears.

An ear with no internal vertices is called a trivial ear.

An ear with different endpoints is called an open ear, otherwise a close ear.

An open ear decomposition is an ear decomposition in which none of the ears is a 

close ear.

It is known that a graph has an ear decomposition if and only if it is 2-edge con

nected ( bridgeless ) and a graph has an open ear decomposition if and only if it is

biconnected[W].

Lovasz[L] showed that ear decomposition problem has an NC parallel algorithm. Y. 

Maon, B. Schieber and U. Vishkin proved the open ear decomposition is in NC and gave 

a very efficient parallel algorithm for ear decomposition running in O(log/V) time using 

M+N processors on CRCW P-RAM, where M  and N  are the number of edges and ver

tices in the graph respectively. With improved implementation, the number of processors

31

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



www.manaraa.com

32

can be reduced to (M+NlogN)AogN [MSV] if the consecutive ear numbers are not 

required, otherwise it needs 0((M+N)a(M,N)) works, where a(M,N) is the inverse Ack- 

ermann function [KR]. As mentioned in [MSV], the ear decomposition has the flavor of a 

general search technique in graphs. It arranges the vertices of the graph by partitioning 

them into paths. This enables exploration of the graph in an orderly manner, which is 

called ear decomposition search. The ear decomposition has been applied to st- 

numbering computing[MSV], planarity test[RR], triconnectivity test[FRT][RV][MR], 

strong orientation[V2][KR], etc. The existing parallel algorithm for ear decomposition is 

based on CRCW P-RAM[MSV] and so are the problems solved based on the ear decom

position as mentioned above. In this chapter, we present an efficient parallel algorithm 

for open ear decomposition which runs on EREW P-RAM with very small overhead and 

simple data structures. The spanning tree construction dominates the complexity while 

all the other steps can be achieved in O(logA0 time using N 2AogN processors on EREW 

P-RAM where N  is the number of vertices of a given graph. Our algorithm gives con

secutive ear numbers.

In section 4.2 we develop a method to reduce a given biconnected graph to a sparse 

biconnected graph, biconnected certificate (to be defined), so as to avoid massive read or 

write conflicts. This method brings a new concept "NF-tree" (to be defined) derived from 

pruning decomposition [DH1] which allows us to construct a biconnected certificate 

without using transitive closure. In section 4.3 an algorithm is presented to perform the 

ear decomposition on the sparse graph and further the ear decomposition for the original 

graph. The preliminaries will be introduced in the related sections.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



www.manaraa.com

33

4.2. NF-trees and biconnected certificates

A spanning tree T  of an undirected graph G={V,E) is called an NF-tree if no edge 

of E is a forward edge for T (NF stands for no forward edges). In another word, every 

non-tree edge is a cross edge for T. As an example, a breadth first search tree ( BFS tree) 

is an NF-tree.

A biconnected certificate G=(V,E) of a biconnected graph G=(V,E) is a sparse sub

graph of G with 0(j V|) edges s.t G is biconnected if only if G is biconnected. The con

cept of the k -connected certificate was introduced by J. Cheriyan and R. Thurimella 

[CT]. They also showed a method for finding a k — connected certificate for a k-connected 

graph based on the BFS trees construction. Here we improve the way to find a bicon

nected certificate which is based on the NF-trees that are efficient for parallel computa

tion.

As introduced in Chapter 2, we can partition the edge set £  of a graph G=(V,E) into 

tree edge set Et, cross edge set Ec and forward edge set E f of spanning tree T  of G.

An NF-tree can be formed by changing the forward edges to tree edges or cross 

edges. The Algorithm NF_TREE, Algorithm 4.2.1, gives the implementation of the 

method in which we assume the vertices are labeled in postorder according to T  of G. 

Figure 4.2.1 gives an example of how an NF-tree is formed, and this example will be 

used continuously in further discussions.

In Algorithm 4.2.1, Step 1 is to construct a spanning tree and step 2 partitions the 

edge set of G by pruning decomposition which can be obtained in 0(log2AO time using 

N 2AogN processors on EREW P-RAM[NM][DH1]. In rest of the steps the major opera-

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



www.manaraa.com

34

Algorithm NF_TREE
{Input: A biconnected graph G=(V,E);
Output: A NF-tree T  with root r . }
1. Construct a spanning tree T=(V,Et) of G with root r;
2. Partition E into Et, E f and Ec of T;

3. T=(V,E) with root r where E<r-Et;
4. For every vertex x with parent v in parallel do

4.1 m ax_ancestor(x)=m ax {y | x <y and (x,y)&Ec};
4.2 If max_ancestor(x)^v

then £f-£U{(x,max_ancestor(x)}-{(x,v)};

Algorithm 4.2.1 Algorithm for finding an NF-tree

G a n d T

: forward edge 
: cross edge

N F-tree

Figure 4.2.1 A biconnected graph and its NF-tree

tion is to find the farthest ancestor for every vertex, which can be done in O(logA0 time 

using N 2AogN processors on EREW P-RAM. In the example of Figure 4.2.1, 

max_ancestor(c)=/ and max_ancestor(g)=r so (f,c)  and (r,g) are tree edges of T  that are 

different from T. Now we show the Algorithm 4.2.1 successfully constructs an NF-tree.

Lemma 4.2.1: Let A (x) be the set of proper ancestors of vertex x in T  and B  (x) be the set 

of proper ancestors of vertex x in T, then B (x)cA (x).

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



www.manaraa.com

35

Proof: Assume on the contrary there is a vertex y eB (x )  buty^A (x). Let the path from x 

to the root r in T be x, v j, it must be the case that max_ancestor(x)=vi, 

max_ancestor(vi)=V2,.», man_ancestor(v*)=y in T. Then y must be an ancestor of v ^ ,..., 

v i and x in T, i.e., y e  A  (x). It is a contradiction to the assumption. □

Corollary 4.2.1: If (x,y) is a cross edge for T  then (x,y) is also a cross edge for T.

Proof: Since (pc,y) is a cross edge for T, x  e  A (y) and y g A  (x). By Lemma 4.2.1, x&B(y) 

and y&B (x), then (x,y) is a cross edge for T.D

Lemma 4.2.2: Let the path from vertex x to the root r  of T  be x, v i, ..., ty, ..., r  and 

max_ancestor(x)=V£. Then in T, x  and vj (j<k) are neither ancestor nor descendent to each 

other.

Proof: From Algorithm 4.2.1, x is a child of v* in T. For any vertex vj (j<k), if v^e B (vj) 

then vj must be a descendent of some v/ s .t j<l<k and v/ is a another child of v* (see 

Fig.4.2.2-a). Therefore x £ B(vy) and vj£B(x). If v^&B (vj) then x e B  (vy) and vj&B(x) 

because vyg B (v^)(see Fig. 4.2.2-b). □

Figure 4.2.2 Cases of transformation to NF-trees

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



www.manaraa.com

36

Corollary 4.2.2: If (x,y) is a forward edge of tree edge for T  and raax_ancestor(x)?y then 

{x,y) is a cross edge for T.

Proof: Follows from Lemma 4.2.2.D

Theorem 4.2.1: An NF-tree of a graph can be found in 0(log2iV) time using TV2/log// 

processors on EREW P-RAM.

Proof: From Corollary 4.2.1 and Corollary 4.2.2, we know every edge of G is either a 

tree edge or a cross edge of T. Hence Algorithm 4.2.1 correctly finds an NF-tree of a 

graph. According to the complexity analysis, this can be performed in O(log2N) using 

N 2AogN processors on EREW.D

If a graph is not connected, then a NF-forest can be found based on the connected 

components of the graph in the same complexity. Now we are ready to construct a bicon

nected certificate for a biconnected graph. The technique used here is similar to the one 

gave by [CT] except it is based on the NF-trees instead of BFS trees. The idea is to find 

an NF-tree, delete the tree edges from the graph, find another NF-tree (or NF-forest) and 

glue those two NF-trees together. Algorithm BI_CERTIFICATE, Algorithm 4.2.2, gives 

the implementation and Figure 4.2.3 is the example continued from the previous step.

Obviously Algorithm 4.2.2 works in O(log2N) time using N 2AogN processors on 

EREW P-RAM and E  has 0(N) edges which makes G a sparse graph. We need to show 

G is a biconnected certificate for G.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



www.manaraa.com

37

Algorithm BI_CERTIFICATE
{Input: A biconnected graph G=(V,E);
Output: A biconnected certificate G=(V,E) of G. }
1. Construct an NF-tree T=(V,Et) of G;
2. G'=(V,E') where E'=E-Et;
3. Construct an NF-forest F=(V,Ef) of G';
4. G=(V,E) where E -E tuE f,

Algorithm 4.2.2 Algorithm for finding a biconnected certificate

:edgc of F 
: edge of G-G

G

Figure 4.2.3 Example of a  biconnected certificate 

Lemma 4.2.3: G is biconnected if only if G is biconnected.

Proof:

"=>": Trivial.

"<==": Assume on the contrary there is an articulation point m in G but G is biconnected. 

Obviously G has more than two vertices. We have three cases (see Fig.4.2.4):

Case 1: m is the root of T  and m has only one child (Fig.4.2.4-a). Because there is no 

forward edge in T, m has only one incident edge in G also, which implies G is not bicon

nected.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



www.manaraa.com

38

A
(m)

a b c

Figure 4.2.4 Cases of articulation points

Case 2: m is the root of T  and m has more than one children (Fig.4.2.4-b). There 

must be a subtree tc rooted with c, a child of m, s .t there is no edge (x,y) in F  has x€  tc 

and y  e  tc since m is an articulation point of G. But such an edge exists in G because G is 

biconnected and this edge must be a cross edge for T  thus it is in G'. This implies there is 

an edge (x,y) in F s.t. x<£tc and y  e  tc. This is a contradiction.

Case 3: m is not the root of T  (Fig.4.2.4-c). Since m is an articulation point of G, 

there is no edge (x,y) in F  s .t x<£tm and y e tm where tm is the subtree of T  with root m. 

But there exists such an edge in G because G is biconnected and this edge must be a 

cross edge for T thus it is in G'. This implies there is an edge (x,y) s.t. x £ tm and y e tm. 

Again, this is a contradiction.D

Theorem 4.2.2: A biconnected certificate G of a biconnected graph G can be constructed 

in 0(log2N) time using N 2AogN processors on EREW P-RAM.

Proof: Follows from Lemma 4.2.3 and complexity analysis of Algorithm 4.2.2.D

An NF-tree has the property that every non-tree edge is a cross edge, which is an 

important property of BFS tree. In parallel computation, BFS tree construction needs

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



www.manaraa.com

39

0(log2AO time by 0(N 3AogN) processors on EREW [DNS][H]. In the cases that BFS 

tree construction is necessary because of this property, the NF-tree can be used instead of 

the BFS tree. Biconnected certificate is one of the example. The NF-trees can be used for 

k-connected sparse certificates instead of the BFS tree[CT). This will reduce the number 

of processors from 0(N 3AogN) to 0(N 2AogN). Notice that in Algorithm 4.2.2, only the 

spanning forest construction needs 0(log2iV) time, while all other steps can be achieved 

in O(logA0 time.

4.3 Ear decomposition on EREW P-RAM

In this section first we give an algorithm for ear decomposition of a biconnected 

certificate, then for ear decomposition of a biconnected graph. We also show it can be 

used to find ear decompositions for 2-edge connected graphs.

The idea of the algorithm is close to the CRCW algorithm [MSV]. Since we works 

on a certificate with only O(N) edges, complexity is O(logA0 time using N 2AogN  PE’s 

on EREW P-RAM if a biconnected certificate is known. It is implemented by Algorithm 

EAR_DECOMPOSmON, Algorithm 4.3.1 and the example is shown in Figure 4.3.1. 

We assume the vertices are labeled in preorder on T.

Since F  has at most k <N edges, the Algorithm 4.3.1 allows k copies of T  to avoid 

read and write conflicts especially in step 1 and step 3. By the Euler tour technique [TV], 

in each of those T s  the lowest common ancestor of a pair of cross edge endpoints can be 

found in O(logN) time using NAogN  processors on EREW P_RAM. Other operations are 

sorting and minimum finding. The whole algorithm can be done in O(logV) time using

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



www.manaraa.com

40

Algorithm ERA_DECOPOSITION
{Input. G, T, G', F  and G;
Output. An ear decomposition Po , Pk of G.)
1. For every edge (x,y) of F  in parallel do

LCA (;c,y)=lowest common ancestor of x  and y;
2. Sort the edges of F  in increasing order of LCA and the endpoints;

Let ORD (x,y) be the position of (x,y) in the sorted list;
3. For every edge (x,y) of F  in parallel do

For every edge («, v) that is between x  (pry) and LCA (x,y) do 
LABEL (u,v, ORD (x,y))=ORD (x,y);

4. For every tree edge (u,v) of Tin parallel do
ORD (u,v)=mm{LABEL(u,v,i)};

5. Ear P,={ (u,v)| ORD (n, v)=z}.

Algorithm 4.3.1 Ear decomposition for certificate

lV2/logW processors on EREW P-RAM. In the example of Figure 4.3.1-a, step 2 actually 

sorts the edges of F  in the order of the 3-tuple (preorder of LCA, preorder of left end

point, preorder of right endpoint) for each edge. Therefore the sorted edges of F  are: 

(f,7X1,2,9), (b,g)=( 1,5,8), (d,f)=(l,7,ll), (£,>(1,8,10), (£,*>(1,8,11), (a, > (2 ,3 ,6 ), 

(c,e)=(2,4,6), (c, <>(2,4,7) and (b,d)=(2,5,7). Step 3 gives the same label for the edges 

of every cycle created by each edges of F. For example, edge (b,d) creates a cycle 

b - d - e —f - c —b. Hence all the edges involved will get a label from (b,d), which is 9, 

from the sorted list. A tree edge may have more than one labels in step 3 (as we men

tioned in step 1, k copies of T  can avoid the access conflicts). For example, tree edge 

* (f,c) has four labels: 2 from (b,g), 5 from (c,e), 6 from (c,d) and 7 from (b,d). Then in

step 6 the order of (f,c)  is 2.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



www.manaraa.com

41

After the above steps, every edge has a unique ORD value that indicates to which

Fig.4.3.1-b.

We can see that the operations involved are sorting and minimum finding, the whole 

algorithm can be done in 0(logA/) time using N 2AogN processors on EREW P-RAM.

Theorem 4.3.1: An open ear decomposition of a biconnected certificate can be found by 

EAR_DECOMPOSITION in OflogAO time using N 2AogN processors on EREW P- 

RAM.

Proof: Followed by the complexity analysis of Algorithm 4.3.1 and the correctness proof 

of CRCW algorithm in [MSVJ.D

ear it should belong. Step 5 does the collection and results for the example are shown in

a

©  ©

c

) b

Figure 4.3.1 Ear decomposition

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



www.manaraa.com

42

Theorem 4.3.2: An open ear decomposition of a biconnected graph can be found by 

EAR_DECOMPOSITION in O(logiV) time using N 2AogN processors on EREW P- 

RAM.

Proof: Let the certificate G have ears P q , ..., P*. Let every edge ( x , y )  that is in G but not 

in G be a trivial ear Pi. As long as l>k, it will be an open ear decomposition for G. The 

only thing need to be done is to sort those trivial ears according to their endpoints. Then 

the open ear decomposition for G is P q , ..., P*, Pk+i, Pk+h* where h  is the number of 

edges that are in G but not in G ( in the example of Figure 4.3.1-c, Pg={(d,g)} and 

P 10={(h,i)}). Since h is 0(N 2), the sorting will not dominate the complexity of the algo

rithm. □

This method can be modified to find an ear decomposition for more general cases,

i.e., for 2-edge connected (bridgeless) graphs. In Chapter 3 we know that Gps is a tree

like structure of size 0(N). Therefore every biconnected component has an articulation 

point that "connects" it to its "parent biconnected component" except the "root". Let this 

articulation point be the root of an NF-tree for the biconnected component and find an ear 

decomposition for the biconnected component Since the biconnected components can be 

labeled in preorder of Gps, all the ears can be arranged in the order s.t. ears of a bicon

nected component have the number larger than the number of the ears of its "parent 

biconnected component". Therefore all the ears will have the numbers satisfying the con

ditions of ear decomposition. Obviously the complexity is the same because the bicon

nected components can be found in the same complexity [DH2].

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



www.manaraa.com

CHAPTERS

ST-NUMBERING AND APPLICATIONS

5.1 Introduction

Given a biconnected graph G=(V,E) that | V| =N and s ,teV , A one-to-one function /  

from V to {1,...^V} is called st-numbering of {s,r} if it satisfies (i) / ( s )= 1 and /  (t)=N, 

and (ii) for each v e V-{.s,f} there exist adjacent vertices x  and y  s .t /  (x)<f (v)</ (y).

The serial algorithm for st-numbering depends on depth first search (DFS)[E]. The 

existing parallel algorithms for st-numbering that run on CRCW or CREW models of 

computation. Y. Maon, B. Schiever and U. Vishkin gave a CRCW st-numbering algo

rithm running in O(logiV) time on M+N processors, where M is the number of edges and 

N  is the number of vertices of the graph. The improved implementation of this algorithm 

runs in O(loglV) time using (M+NlogN)AogN processors on CRCW P-RAM 

model[MSV].

In this chapter, we present an efficient parallel algorithm for st-number computing 

which runs in O(logiV) time using N  processors on EREW P-RAM with very small over

head and simple data structure based on the ear decomposition of Chapter 4.

Many problems that are solved sequentially using depth first search can be attacked 

in parallel by using st-numbers. The st-numbering plays an important role in many graph 

problems such as planarity testing and triconnectivity. Some communication network 

related problems related to st-numbering will be introduced in this chapter.

43

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



www.manaraa.com

44

In section 5.2 we present the algorithm for computing an st-numbering of bicon

nected graphs based on the results of ear decomposition of Chapter 4. In Section 5.3 we 

apply the st-numbering to other graph problems including bipartitioning of biconnected 

graphs, constructing centroided tree or centered tree of biconnected graphs and strong 

orientation.

5.2 St-numbering on EREW P-RAM

In Chapter 4 we can obtain an open ear decomposition with consecutive ear 

numbers Po,...,P r - 1  from a biconnected certificate G of a biconnected graph G. By the 

fact that an st-numbering of G is also an st-numbering of G, we introduce a very simple 

method to compute an st-numbering for G (hence for G), on EREW P-RAM in O(logA0 

time using N  processors based on the result of ear decomposition of G.

From Algorithm 4.3.1 and example of Fig.4.3.1 (for convience, we copy the ears of 

G of Fig.4.3.1 to Fig.5.2.1 and let s =f, t=r), we have the following observations:

•  Every ear of G contains exact one cross edge of T  (e.g., (b,g) is the only cross edge 

in Pi of Fig.5.2.1).

•  Let vertices x,y  be the endpoints of ear P,- and all the rest vertices of Pt- be 

internal vertices of P,-, then x e P j  and y eP / s.t. j <1 <i (e.g., in P 2  of Fig.5.2.1, 

fe  P 0, ye P 1 and e,d,i are internal vertices).

•  If vertex u is an internal vertex of P,- and vertex v is the parent of u in T, then v is 

either an internal vertex or an endpoint of P; (e.g., e is the parent of d in T  of G of 

Fig.4.3.1).

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



www.manaraa.com

Figure 5.2.1 Ears of G and Tst 

Lemma 5.2.1: The internal vertices of all the ears of G partition the vertex set of F-{s,r}.

Proof: The ear decomposition partitions the edge set of G, so every vertex appears in 

some ears. Let s and t  be the endpoints of P q , then every vertex of F-{r,f} appears as an 

internal vertex of some ears. We need to proof that each every vertex appears as an inter

nal vertex at most once. Assume on the contrary, vertex u appears as an internal vertex 

of Pi and P j. Let v be the parent of u. Edge (w,v) will appear in both P,- and P j, contrad

iction to the fact that ear decomposition partitions the edges of G.D

We define an ear index function p  of vertices to be p  («)=i if vertex u is an internal 

vertex of ear Pt. By Lemma 5.2.1 we know thatp  (u) for u is unique. Therefore in ear P,-, 

we have p (x)=g and p  (y)=h, where x,y  are endpoints and p  (w)=i for every internal ver

tex u. Let y  be the head of the ear and x  be the tail of the ear if g<h (e.g., in P 2  of 

Fig.5.2.1, s is the head and j  is the tail). Let p(s)=p(t)=Q. We construct a tree Tst in the 

following way:

•  If u is an internal vertex of P f- and v is the vertex that adjacent to u and closer to the 

head of P; (v could be the head), then v is the parent of u in Tst. In example of

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



www.manaraa.com

46

Fig.5.2.1, internal vertex d  of P 2  has parent e in Tst.

•  If u,v are children of x  in Tst, then u is on the left of v in Tst if p  (u)>p (v). In exam

ple of Fig.5.2.1, a ,e ,c ,j are children of s. Because p  (a)>p (e)>p (c)>p (/), s has 

children in order of a ,e ,c ,j in Tst.

Lemma 5.2.2: The preorder of Tst is an st-numbering of G.

Proof: Let g (u) be the preorder of u in Tst. The root of Tst is s, which has g (s)=l. Ver

tex t is the right most leaf of Tst according to the ordered construction, hence g (t)=N. 

We need to show that for every other vertex u, there must be g (x)<g (u)<g (y), where x,y 

are neighbors of u in G. Consider vertices of V-{s,f} in Tst, we have two cases:

Case 1: u is not a leaf of Tst• It has g(x)<g (u)<g(y) where x  is its parent and y  is its 

child.

Case 2: u is a leaf of Tst, u must be an internal vertex of P, s .t u is next to the tail y  of 

P;. Then (u,y) is a cross edge of Tst. By the order of children for every vertex, if 

p  (u)>p (y) then y is always on the right side of u, i.e., g (u)<g (y). Let x be the parent of 

u in Tst, we have g (x)<g (u)<g (y).D

The procedure ST_NUMBER, Algorithm 5.2.1, describes the method. Referring the 

example of Fig.5.2.1, after step 1, p  (s)=p (j)=P (t)=0, p  (c)=p (b)=p (g)=l,...etc. This can 

be done by identifying endpoints in 0(1) time using N processors. Step 2 can be 

achieved by list ranking in O(logAO time using NAogN processors. The sorting of step 3 

can be done in O(logW) time using N  processors [C]. The preorder can be computed in 

step 5 in O(logAT) time using NAogN  processors. Therefore Algorithm 5.2.1 runs in

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



www.manaraa.com

47

Procedure ST_NUMBER
{Input: Ears Pot...,Pk;
Output: st-numbers of V.}
1. Compute p(u) for each internal vertex of each ear;
2. Identify parent for every internal vertex of each ear;
3. Sort children for each vertex;
4. Construct Tst;
5. Compute preorder of Tst;

Algorithm 5.2.1 Algorithm for st-numbering

O(logA0 time using N  Processors.

Theorem 5.2.1; Procedure ST_NUMBER computes an st-numbering of a biconnected 

graph G.

Proof: By Lemma 5.2.2 and complexity analysis of Procedure ST_NUMBER.D

5.3 Applications of st-numbering

As we mentioned before, st-numbering can be used to solve many graph problems 

in parallel. In this section we apply the st-numbering to some network related problems.

5.3.1 Bipartition of biconnected graphs

The problem of bipartition of biconnected graphs is defined to be:

Given a biconnected graph G=(V,E), si,S 2 e V» » i+ « 2 H ^l» partition Vinto and 

V2 s.t. s 1 e  V \, •s,2 e  ^ 2’ 1V1 1 =« 1 , | V2 |=n 2  and both V l ,V2 are connected subgraphs of G 

by edges of G.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



www.manaraa.com

48

The bipartition of biconnected graphs partitions a system with specified vertices in 

different connected portions of desired sizes. It has applications in job scheduling, fault 

tolerant routing, distributed system management and various communication problems.

H. Suzuki, N. Takahashi and T. Nishizeki found a serial algorithm in 1990 for 

bipartition of biconnected graphs of time complexity O(M+N), which is based on the 

DFS tree of the graph [STN]. Here we introduce a solution for this problem that is easy 

to be parallelized:

Let function / be a st-numbering of { ^ i,s2} f°r V, i.e., let  ̂1 be s and s 2 be t. We 

partition vertex set Vinto: V i={v |/(v)<«i} and V2 ={v |/(v)>n1}.

Claim 5.3.1: V\ and V2 is a bipartition of V.

Proof: Obviously V^, s 2e V 2, | V i|=«i and \ V^=n2. If we assign direction for 

every edge of G from u to v if f(u )< f(v ), a directed acyclic graph (DAG) is formed. 

Every vertex v has a directed path from s j to v s.t any vertex u on the path has 

/  (s)<f (u)<f (v). I f /(v )< « i then every vertex u on the path has /(« )< «  1 . Therefore 

they are all in Vj. An outtree with root s j can be found with vertices of V\. In the 

undirected sense every vertex v is connected to s 1 if /  (v)<n 1 . Hence vertices of Vi are 

connected. Similarly, an intree with root s 2 with vertices of V2 can be found and in the 

undirected sense, the vertices of V2 are connected.^

Clearly the running time of this partition is determined by the st-numbering comput

ing.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



www.manaraa.com

49

5.3.2 Centroided Trees

To establish a connected system so that a certain server is located in a position to 

meet some criteria is frequently required in networks. Generally they are referred as loca

tion problems.

We first give the preliminaries of the location problems:

The distance of two vertices is the length of the shortest path between the two ver

tices. The distance of a vertex u from a vertex set S is the shortest distance between u and 

any vertex of S. The distancesum of vertex u is the total distances from u to all the ver

tices in V-u. The distancesum of vertex set S is the total distances from S to all the ver

tices in V-S. The median of a graph is the vertex which has the minimum distancesum. 

Particularly in a tree, a centroid is the vertex that by taking it away, the largest subtree 

has size<l/2N. It is known that in a tree, a centroid is a median [SI].

The problem of constructing a centroided tree of a biconnected graph is to find a 

spanning tree of the graph with specified vertex as the centroid. A serial algorithm of 

time complexity 0(M) was introduced in 1984 by G. A. Cheston [Ch]. Here we present a 

parallel algorithm for this problem that is based on the st-numbering and bipartition of 

biconnected graphs.

The idea of centroided tree algorithm is as following. Let t be a neighbor of s and 

bipartition the G by si=s, s 2=t, ni=fl/2Af] and n 2=\)-/'2.N\. Since t is connected to s, a 

centroided tree can be formed if we combine the intree with root t and the outtree with 

root s (and then disregard the directions of the edges) into a spanning tree of the original 

graph that satisfies: ( 1 ) s is the root and (2 ) t  is the child of s.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



www.manaraa.com

50

Procedure CENTROIDED_TREE
{Input: Biconnected graph G=(V,E) and vertex s of V;
Output: A spanning tree T  of G s .t s is the centroid.}

1 . /=rain{x| (s,x)e G}; {choose a child of s to be t)
2. Computer an st-numbering / o f  V for {s,t};
3. {Form a DAG}

For each edge (u,v) in parallel do
Assign direction from u to v i f  f (u )< f  (v);

4. Bipartition G with si=s, s 2=t, ni=fl/2Af| and n 2=\l/2N\ into Vi, V2;
5. { Construct an outtree Tout with root 5  }

For each vertex u of Vj-fs} in parallel do
(v,«)e Tout if / (v)=min{/(x)|(x,u)e£>AG};

6 . { Construct an intree Tin with root t }
For each vertex u of V2-{t] in parallel do

(«,v)e Ein if /  (v)=max{/ (x)| (u,x)eZ>AG};
7. Construct a centroided tree T=(V,ET) with root s s.L

ET=Ein\JE0Utu  {(s, t) } j
Remove the direction for every edge;

Algorithm 5.3.2 Algorithm of centroided tree construction

The procedure CENTRODDED_TREE (Algorithm 5.3.2) shows how the method 

proceeds. Figure 5.3.1 illustrates the method by an example. Figure 5.3.1-a gives a bicon

nected graph G and a specified vertex s. An st-number of {s,t} and a DAG are shown in 

Figure 5.3.1-b. The bipartition is done by si=s, s 2=t and n i =f 1/2N] = 6  by step 4. The 

outtree and the intree that imply two subtrees are formed by steps 5 and 6  respectively 

based on st-numbers and the DAG directly, as shown in figure 5.3.1-c. The combining is 

trivial which is done by step 7.

Except step 2 which computes the st-numbering of a biconnected graph, all the 

other steps of Algorithm 5.3.2 can be performed in 0(logN) time using NAogN

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



www.manaraa.com

51

m

e

18

i

a. Biconnectcd graph G

[ID

c. Combined T out and T in

b. st-numbers and DAG

Figure 5.3.1 Centroided tree construction

processors on EREW P-RAM since only operations of comparison and finding minimum 

(maximum) are performed. Therefore the st-number computing dominates the complex

ity of centroided tree construction for all different P-RAM models.

Claim 5.3.2: Procedure CENTROIDED_TREE constructs a spanning tree of G with s as 

the centroid.

Proof: First we notice that T is a tree since edge (s,t)e G connects two subtrees that parti

tions the vertices of G. From bipartition we know that each of the subgraphs has at most 

half of the vertices and s, t belong to different subgraphs. The intree and the outtree are 

of size at most half of the total vertices. By taking s away from T  no subtree has vertices 

more than half of the total vertices. Hence T  is a spanning tree of G with s as the cen- 

troid.D

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



www.manaraa.com

52

If the problem is to generate a spanning tree with vertex set Q as the centroid of the 

tree s.t. vertices of Q are connected, we can easily reduce G to G' by shrinking Q into one 

vertex q and (<?,v) is in G' if there is Qc,v) and r e  Q in G. Surely G' is connected. If there 

is any articulation point in G' it must be q. Then every biconnected component contains 

q. For each biconnected component construct a spanning tree with q as the centroid. 

Combining those centroided trees forms a centroided tree of Gf. Then we expend q into a 

spanning tree of Q and mark only one edge between vertex in Q and vertex u e V-Q  if 

there is an edge (q,u) in G'. The resulting tree has Q as the centroid. Obviously every 

operation mentioned above can be done within the bound of st-numbering.

5.3.3 Centered Trees

The problem centroided tree of a biconnected graph is to construct a tree out of a 

biconnected graph so the specified vertex (or connected vertex set) is located at the 

optimal position in the sense of minimum total distance. Instead of distancesum as dis- 

Gussed in the previous section, here we consider the eccentricity of vertex u, which is the 

largest distance from u to any vertex in V-u. The eccentricity of vertex set S is the larg

est distance from any vertex in S to any vertex in V-S.

The problem of constructing a centered tree of a biconnected graph is to find a span

ning tree of the graph such that a specified vertex is the center. G. Cheston, A. Farley, S. 

Hedetniemi and A. Proskurowski represented an algorithm run in O(N3) time to find a 

centered tree for biconnected graphs in 1989 [CFHP].

In this section we give a parallel algorithm for this problem. This parallel algorithm 

implies a better serial algorithm with complexity of 0 (M) comparing to the known 

O(N3) method.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



www.manaraa.com

53

Consider a tree Tcen:

1. Vertex s is the root and s has at least two children;

2. Let c\,...,Ck be the children of s; Let h  be the subtrees with roots ci,...,c* 

respectively; Let hi,...,hk be the height of t respective; W.l.o.g. let hy be the 

largest and h 2 be the second largest of h f  s then h y -&2 - l-

Claim 5.3.3.1: Vertex s is a center of Tcen.

Proof: Assume on the contrary s is not a center but vertex u is a center. Vertex u must be 

in one of tt , l<i<k. If u is in ty  then the distance from u to the farthest leaf of t 2 is greater 

or equal to h 2+ 2 so that eccentricity of u is at least h 2+ 2. If u is not in t y  then the dis

tance from u to the farthest leaf of t i  is greater or equal to h \ + 2  so that the eccentricity 

of u is at least h y + 2  that is at least h 2+2 .  We know that the eccentricity of s is 

h 1 + l < h 2+2.  It is a contradiction to the assumption.^

Our method of centered tree construction is to find such a tree Tcen in G . Let the 

DAG, the outtree with root s and the intree with root t be achieved by the same way as we 

described is Section 5.3.2. Let Hout and be the heights of the outtree and the intree of 

Algorithm 5.3.2 respectively. We have the following claim.

Claim 5.3.3.2: There exists a cut of the DAG that makes Hout-Hin- 1 or Hout-Hin=0.

Proof: Assume a cut of the DAG leaves k vertices in the outtree and leaves N - k  vertices 

in the intree and Hout-Hin<0. Such k must exist since k=1 satisfies the condition. Con

sider the cut of k+l vertices for the outtree and N - k - 1 vertices for the intree. The only 

change compared to the cut of k vertices is the vertex u with /  (u)=k is moved from the

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



www.manaraa.com

54

outtree to the intree (and correspondent edge changes of cause). The changes of Hm and 

Hout could have four cases:

1. Hin increases one and Hout decreases one;

2. Hin increases one and Hout does not change;

3. Hi„ does not change and Hout decreases one;

4. Neither Hin nor Hout is changed.

Let D (k)=H0Ut-Hin for the outtree of size k and intree of size N -k. From the above 

cases we notice that D (k) is a non decreasing function. Notice that Z>(1)<0, D(N-1)>0 

and D (k+l)-D (k)<=2. There must be a l<k <N s .t D (fc)=l or D (£)=().□

The idea to find the required cut is as following. Let t be a neighbor of s. First we 

construct an intree of size N  with root t and an outtree of size N  with root s based on the 

st-numbering and the DAG that are obtained by the same way as discussed in the previ

ous section. Then the level for every vertex is computed in both trees. Based on the lev

els, an hin{u) for every vertex u in intree can be achieved by the scheme similar to prefix

b. Intrcc and hin (u)'s
a. Outtree and houl (u)'s

Figure 5.3.2 Example of centered tree

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



www.manaraa.com

55

sum computation s.t. hm(u) indicates the height of the intree with vertices having st- 

number greater or equal to f (u ) .  Similarly, the hout(u) for every vertex u in the outtree 

can be computed. The cut will surely be found by knowing h0Ut(u)-hin(u) for every ver

tex u. The Procedure CENTERED_TREE, Algorithm 5.3.3, shows the parallel algorithm 

for finding a centered tree of a biconnected graph.

We take the same example in Figure 5.3.1-a. Node t is a neighbor of s. The st- 

numbering and the DAG are shown in Figure 5.3.1-b. The intree and the outtree of size N 

are shown in Figure 3.5.1 in which the ^/„(m)’s and h0Ut{uY& are also illustrated. Notice 

that D (b )=hout (b )-hin (a )=4-3=1. Therefor k - 6 . The cut is visually shown in Figure

5.3.2. The combined tree T  is the same as the centroided tree shown in Figure 5.3.1-c.

Claim 5.3.3.3: The spanning T  constructed by CENTERED_TREE has s as the center.

Proof: First we know that T  is a spanning tree of G since (s,t)s G and it connects two 

subtrees that partitions V. Step 8  can be successfully performed because there must be a 

k, l<k<N, s .t D (k)=l or D (k)=0, by Claim 5.3.3.2. Taking away s from the outtree Tout, 

the highest subtree left has the height one less than Tout' It has height either the same as 

the intree Tin or one less than Tj„. Therefore in T, the subtree with root t, which is 

derived from Tin, is the highest subtree with root t as a child of s and the subtree derived 

from the highest subtree of Tout is the second highest subtree. According to the discus

sion of Tcen at the beginning of this section, T  is a spanning tree of G with s as the 

center. □

Different from steps in CENTROIDED_TREE, here we need to compute level for 

each vertex and h-in (hout) in the intree with root t (the outtree with root s) for all the ver

tices. This can be done in O(logN) time using NAogN processors. Other operations are

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



www.manaraa.com

56

Procedure CENTERED_TREE:
{Input: A biconnected graph G=(V,E) and vertex s of V;
Output: A spanning tree T  of G with s as the center.}

1. /=min{x| {s,x)e G);
2. Computer an st-numbering/of V for {s,t};
3. {Form a DAG}

For each edge (m ,v )  in parallel d o

Assign direction from u to v if /  (u)<f (v);
4. { Construct an outtree Tout with root s of size N  }

For each vertex u of V-{s} in parallel do
(v,«)e Tout if /  (v)=min{/ (x)\ (x,u)e DAG};

5. { Construct an intree Tin with root t of size N }
For each vertex u of V2-U} in parallel do

(u,v)s Ein if /  (v)=max{/ (x)| (u,x)€DAG);
6. For each vertex u of V in parallel do

lin(u)=level of u in the intree; 
lout(u)=level of u in the outtree;

7. For every vertex u of V in parallel do
^w(w)=max{ lin(x ^ f  (x)>f («)};
h0ut(.u)=max{lout(x)\f (x)<f («)};
D (u)=h0U[ {u )-km (v) where /  (v)=/ («)+i;

8 . If there is a x  s.L D (x)=l then /  (fc)=min{/ (x)j2) (x)=l}; 
else fc=min{x|D (x)=0 };

9. Reduce Tout to size of k by «e Tout if /  (u)<k;
Reduce Tin to size of N -k  by ue Tm if /  (u)>k;

10. Construct a centered tree T=(V,ET') with root s s.t
Et  =Ein uE 0Ufu  {(s, f)};
Remove the direction for all the edges;

Algorithm 5.3.3. Algorithm of centered tree construction

minimum and maximum finding, which can be computed in O(logN) time using NAogN 

processors. Hence the complexity of CENTERED_TREE is the same as 

CENTROIDED_TREE.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



www.manaraa.com

57

If the problem is to generate a spanning tree with vertex set Q as the center of the 

tree s.t vertices of Q are connected, we can use the method similar to the case in cen

troided tree construction. For each biconnected component instead of running 

CENTROIDEDJTREE we need to run CENTEREDTREE. The rest will be the same. 

The complexity is the same as shown above.

This algorithm implies a serial algorithm of time complexity 0(M) to find a cen

tered tree for a biconnected graph. This is better than the known method that runs in 

0(N 3) time [CF].

3.6 Strong Orientation

The strong orientation of an undirected graph assigns direction for every edge of 

the graph so that every vertex can reach any vertex of the graph by some directed path 

(i.e., the directed graph is strongly connected). Obviously the strong orientation can be 

done only for bridgeless graphs.

The strong orientation has a linear sequential algorithm based on DFS of the 

graph[A]. M. Atallah gave an 0(logiV) time by 0(AT3) processors on CRCW for this 

problem which runs in 0(N3 /p+lof^N) time by p  processors on CREW[A]. Vishkin 

gave an 0(logN) time by N+M processors on CRCW and an alternative implementation 

of the algorithm in 0(N 2/p) time by p<N1AoglN  processors on CREW[V]. Here we 

present a very simple method which works on EREW P-RAM.

Notice the orientation from the previous section ensures every vertex having at least 

one incoming and one outgoing edges except s and t. This implies any vertex can reach t 

and s can reach any vertex by some directed paths. If we choose a pair of adjacent ver

tices to be s and t, assign the edge (s,t) from t to s will give a strong orientation for a

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



www.manaraa.com

58

biconnected graph.

In general, the bridgeless graph may have some articulation points. Every bicon

nected component of a connected bridgeless graph has at least one articulation point 

which belongs to another biconnected component The edges of the graph are partitioned 

by the biconnected components. Combining the strongly oriented biconnected com

ponents yields a strong orientation for the graph. The only thing we need to show is that 

the total number of vertices of all the biconnected components of a bridgeless graph with 

N  vertices is 0(A), so that the number of processors we need is the same as. for a bicon

nected graph. Let G be a connected bridgeless undirected graph and G' be the graph con

sists of all the biconnected components of G.

Lemma 5.3.4: Each biconnected component of G adds one more vertex in G'.

Proof: A biconnected component contains only one articulation point is called a pendant. 

G has at least two pendants. We construct G' from G in the following way: if a bicon- 

nected component B is a pendant with articulation point as then move B from G to G' s.L 

vertex ag is duplicated into two, one is in B of G' and one is still in G but not necessary 

an articulation point By moving all the pendants the new pendants are generated. At last 

G will be biconnected, hence moving G to G' ends the construction. Obviously each 

pendant splits one articulation point hence each pendant adds one more vertex in 

transmitting from G to G'. Precisely, if G has k  biconnected components then G' has 

(fc-l) vertices than G.D

Corollary 5.3.1: G' has 0(A) vertices.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



www.manaraa.com

59

Proof: Followed by Lemma 5.3.4.D

Clearly the st-numbering and biconnected components are the main parts of the 

strong orientation. Therefore the spanning tree construction dominates the complexity.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



www.manaraa.com

CHAPTER 6

MINIMUM CUTSETS FOR REDUCIBLE GRAPHS

6.1 Introduction

Processes, in particular computer programs, are often represented by directed 

graphs. The analysis and manipulation of systems modeled as graphs require a selection 

of minimal subset of the vertices that cuts all the cycles in the graphs. This set is referred 

to as a minimal cutset (or feedback vertex set). Two common application areas that use 

cutsets are program verification and code optimization [HU1][FJ. Reducing the size of 

the vertex set, that cuts all the cycles, usually leads to a simpler and more efficient 

analysis.

The problem of finding a minimal cutset in a directed graph is NP-complete [K]. A. 

Shamir showed that for an important class of directed graphs, reducible graphs, there is a 

serial linear time algorithm for finding a minimum cutset [Sh]. Most directed graphs pro

duced from flow charts of computer programs, (or flow graphs), are reducible. We refer 

the reader to the paper by A. Shamir [Sh] for more background for the problem.

The ongoing research in the area of vectorizing and parallelizing compilers brought 

more interest in reducible graphs. Recognizing loops and optimizing execution around 

them are of key importance in this area. Recently J. Lucas and M. Sackrowitz showed 

that testing whether a given directed graph with N  vertices is reducible can be done in 

O(log2 A0 time using 0(N 3AogN) PE’s [LS].

60

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



www.manaraa.com

61

In this chapter we present a parallel algorithm for finding a minimum cutset in a 

reducible graph in 0(log3 A/) time using 0(N 3AogN) PE’s on EREW P-RAM. Finding an 

efficient parallel algorithm for this problem is particularly interesting because the sequen

tial algorithm employs a Depth First Search Tree [Sh]. Depth First Search is believed to 

be inherently sequential [R]. The pruning decomposition search is applied to the directed 

graphs here.

First we introduce some definitions related to the problem. We refer to the papers 

by M. Hecht and J. Ullman [HU1][HU2], and the paper by A. Shamir [Sh], for more 

definitions and detailed discussions of reducible graphs and their properties.

We use G(V,E) to denote a directed graph. V is the set of vertices and EaVxV  is

the set of edges. A vertex is a cutpoint of a cycle if by taking it away, the cycle is broken.

A cutset of a graph G(V,E) is a subset of the vertices S a V  such that any cycle in graph 

G  contains at least one vertex from S. A minimum cutset of a given graph is a cutset S' 

such that any other cutset for this graph has at least the same number of vertices.

A graph G(V,E,r) is a rooted graph if it has a vertex r, root, with the property that 

for any v e V there is a path from r  to v. Vertex v dominates vertex u in a rooted graph 

G (V,E,r) if every path from r  to u passes v. The DAG of a directed graph G is a maximal 

acyclic graph that is a subgraph of G.

The following are equivalent for a reducible grap/i[Sh]:

1. A directed rooted graph G={V,E,r) is reducible;

2. The DAG of G is unique;

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



www.manaraa.com

62

3. The set of edges E of graph G can be partitioned into two subsets E j and E2. £ 1  is 

the set of edges of the DAG of G. E2=E -E \ and for every edge (w,v) in E2 either 

u=v or v dominates u in G, as well as in the DAG of G.

We now define a few terms that will help us in presenting the serial algorithm [Sh]. 

Let v be a vertex in the reducible graph. Vertex v is a head if there is an edge (n,v) in E2 

for some vertex u. Vertex u is a tail. Let part of the cycles in G(V,E) be cut by a set 

S c V  of vertices. We denote head v as active if there is some path from v to a correspond

ing tail that is not cut by any vertex from S in the DAG of G. An active head is maximal 

if none of its proper descendants in the DAG of G  is an active head.

Procedure SeriaI_Min_Cutset:
{Serial algorithm for finding minimum cutset S for a given reducible graph G [Sh].}
1. S < -0 ;
2. Select a maximal active head v in G with respect to the current set S. If there is 

none, stop; otherwise set S < -S  u{ v} and repeat step 2.

Algorithm 6.1.1 Serial algorithm for minimum cutset

Procedure Serial_Min_Cutset (Algorithm 6.1.1) is based on the following principle: 

If a vertex u is a head and there is a path from u to one of its tails such that every vertex 

(except u itself) on the path has been determined not to be in the cutset, then u is deter

mined to be in cutset We later refer to this principle as the decision principle. It implies 

that an algorithm in which every vertex in cutset is selected according to the decision 

principle gives a minimum cutset The complexity of this serial algorithm is 0 (|V|4 |E|). 

pp In Section 6.2 we present a parallel algorithm for finding the minimum cutset in a spe

cial type of reducible graph. The main result is presented in Section 6.3. We also present

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



www.manaraa.com

63

a heuristic for finding a cutset in general graphs in section 6.4.

6.2. Minimum Cutset of a Branch

In developing our parallel algorithm we first handle a special type of reducible 

graphs. We name this type of reducible graph a ’branch’. A reducible graph K(V,E) is a 

branch if the DAG of K is a chain.

The following are equivalent for a branch.

(1) K  is a reducible graph and it has unique DAG that is a chain.

(2) The edges of K  can be partitioned into chain edges and back edges.

(3) Each back edge creates a cycle in K.

In a branch K, let U\ and t / 2  denote the vertex sets of cycles C\ and C 2  respec

tively. If Ui is contained in U2 then a cutpoint of C\ is also a cutpoint of C2.

redundent

a b c

Figure 6.2.1 Example of redundant edges

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



www.manaraa.com

64

Let Ei denote the set of edges of the DAG of K  ( the edges of the chain) and E2 

denote the set of backedges. The vertices of K  are labeled according to the postorder of 

the DAG of K  ( In Shamir’s serial algorithm preorder is used. Our algorithm can work by 

either postorder or preorder.). Applying the decision principle to the postorder labeled 

DAG of K  we observe the following property: let (u,v) and (jc,y) be two backedges of K, 

if x<u and y>v then backedge (x,y) is redundant for the purpose of finding a minimal 

cutset in K  and can be ignored (Fig. 6.2.1).

After deleting all the redundant back edges from a branch K  we get a graph TC that 

we call a simple branch. A simple branch IC with n vertices has at most (N-l) back 

edges. Each vertex can be a head at most once and be a tail at most once. It is easy to see 

that a minimal cutset of a simple branch is also a minimal cutset of the corresponding 

branch.

Let Cu denote the cycle of a simple branch IC that is formed by back edge (v,u).

Let tu denote the tail of head u in simple branch K'.

Lemma 6.2.1: If a head x  is in cycle Cu and jc <v <u where v is also a head, then: (a) x is 

in cycle Cv, and (b) v is in cycle Cu.

Proof: (See Fig. 6.2.2-a)

a. Assume to the contrary that x is not in cycle Cv, then if v >x and v is a head, the tail 

of v, tv, must be greater than x. Then any back edge (y,u) s.t tv<y<tu would have 

been deleted in the construction of tC, since back edge (tu,v) and (y,u) have tu>y 

and v <«. Hence x  is not in Cu, contradiction.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



www.manaraa.com

65

b. Assume to the contrary that v is not in cycle Cu, then u cannot reach x. In other 

words, x  is not in cycle Cu, contradiction.□

head-dcpcndcncy graph

a °

Figure 6.2.2 Head-dependency graph

We now construct D, the head-dependency graph of a simple branch K*. The ver

tices of a head-dependency graph are the heads of the simple branch and (u,v) is an edge 

in D iff u is in cycle Cv. Fig. 6.2.2-b is an example of the head-dependency graph. We 

proceed to show how to find a cutset of a simple branch (hence a branch) using the head- 

dependency graph of a simple branch (Algorithm 6.2.1).

Procedure Serial_Branch_MinCut (D)
{Input is a head-dependency graph D }
1 . S i«-{v|v has no incoming edge};
2. S2<—0 ;
3. repeat
4. if a vertex u has an immediate predecessor that is in S i , then put u in S2.
5. if a vertex u has all its immediate predecessors in S 2  then put u in S \ .
6 . until every vertex is either in 5 1 o rin S 2.
7. S i is a cutset.

Algorithm 6.2.1 Serial algorithm for branch minimum' cutset

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



www.manaraa.com

66

Procedure SeriaI_Branch_MinCut uses two sets to partition the vertices of the 

head-dependency graph D. In steps 1 and 2 of the procedure we initialize these sets. 

Clearly all vertices of head-dependency graph D are candidates for membership in a 

minimal cutset Set S \ is initialized with vertices that have to be in the cutset. These are 

the vertices that have no incoming edges in D. Set S 2 has vertices that are determined not 

to be in the cut set as members and it is initially set to be empty. The loop in lines 3 to 6  

is executed until all vertices are determined either not in the cutset or as members of the 

minimal cutset The correctness of the algorithm is proved in the following lemmas.

Lemma 6.2.2: In every iteration of the loop, (lines 3-6, Algorithm 6.2.1), there is at most 

one immediate predecessor in S 1 for any vertex.

proof: Assume to the contrary that vertices x,y are in S 1 and both are immediate prede

cessors of vertex u. We can assume without loss of generality that x  >y, by Lemma 6.2.1 

and the construction of the head-dependency graph, y is also an immediate predecessor of 

x. According to Algorithm 6.2.1, x  should be in S 2, contradiction.D

Lemma 6.2.3: A vertex u is placed in S 1 by procedure Serial_Branch_MinCut, (Algo

rithm 6.2.1), iff there is a path in K' from u to tu such that every vertex on that path 

(except u) is either in S 2  or is non-head.

Proof: Assume that vertex u is in S 1 then all its immediate predecessors in D are in £ 2 - 

It implies that every head in cycle Cu other than u is not in cutset; that is, there is a path 

from u to tu with every vertex either in S 2  or non-head. Clearly, if there is a path in FC 

from u to tu such that every vertex on the path is either in 5 2  or is not a head then u is

placed in S i.□

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



www.manaraa.com

67

Lemma 6.2.4: Si is a minimum cutset of simple branch K'.

Proof: Follows from Lemma 6.2.3, the construction of head-dependency graph and deci

sion principle. □

Corollary 6.2.1: S i is a minimum cutset of K.

Proof: Follows from Lemma 6.2.4 and previous discussion.D

In our discussion we assume that the information for the branch includes the parti

tion of its edges to DAG edges and back edges. Although this information is hot typically 

available as input, it is available in our context as we shall show later. To reduce a branch 

to a simple branch takes OiM) time where M  is the number of edges in the branch. The 

construction of the head-dependency graph takes 0 (m) time where m is the number of 

edges in the head-dependency graph. Procedure Serial_Branch_MinCut, (Algorithm

Procedure P_BRANCH_CUTSET (20;
{ Input is a branch K. Vertices are labeled in postorder of its DAG. Edges are partitioned 
into DAG edges and back edges. }
A. Simple_Branch; {Produce simple branch K* by deleting redundant back edges.}
B. Head_Graph; {Construct head-dependency graph from K ' . }
C. {Find a minimum cutset for branch K }
1 Cutset of K<r-0;
2  for each block of the head-dependency graph in parallel do
3 Block_Cutset; {Determine the minimum cutset for each block.}
4 Cutset of K<- Cutset of K u cutset of block; 
end; {P_BRANCH_CUTSET}

Algorithm 6.2.2 Skeleton for branch minimum cutset

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



www.manaraa.com

68

6.2.1) takes 0(m) time, since every edge is checked by some vertex once. Thus we can 

find a minimum cutset of a branch in linear time.

A head-dependency graph may contain several weakly connected components. We 

call such a component a block. Procedure P_BRANCH_CUTSET is a parallel algorithm 

for computing a minimum cutset for a given branch K, (Algorithm 6.2.2). It is a parallel 

implementation of the ideas in Procedure Serial_Branch_MinCut, Algorithm 6.2.1, and 

the discussion le ading to i t

There are three main steps in Procedure P_BRANCH_CUTSET, (Algorithm 6.2.2). 

In the subsequent paragraphs we discuss the parallel implementation of each of these 

steps. It is instructive to follow the algorithm with an example. A branch with 11 ver

tices (Fig 6.2.3-a) is simplified in step A of Procedure P_BRANCH_CUTSET to produce

a

head-dependency'
graph

b

relabel

Figure 6.2.3 Construction of head-dependency graph

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



www.manaraa.com

69

procedure Simple_Branch;
1. if a vertex u is a head then in parallel do

v<—raaxftails of u}; {find the closest tail}
Delete the backedges (w,u) if w^v;{case of Fig. 3.1-a}

2. if a vertex v is a tail tihen in parallel do
u <—min{ heads of v}; {find the closest head}

Delete backedge (v,w) if w&u; {case of Fig.3.1-b}
3. Sort backedges in increasing order according to the tails; 

for each backedge (w,v) in parallel do {case of Fig.3.1-c}
if the next backedge (x,y) has x>u  and y  <v then delete («,v); 

end; {Simple_Branch}

Algorithm 6.2.3 Algorithm for simple branch

the simple branch in Fig. 6.2.3-b. This simple branch is processed in step B to produce 

the head-dependency graph (Fig. 6.2.3-c).

Procedure S im p le _ B ra n ch  (Algorithm 6.2.3) has 3 steps, each step corresponds to 

one of the observations presented earlier in Fig. 6.2.1. The implementation of these steps 

is quite straight forward. In our example (Fig.6.2.3), vertex 9 is head for backedges 

(5,9) and (6,9). Edge (5,9) is found redundant and is deleted in step 1. Step 1 also 

deletes edge (2,4). Processing in step 2 doesn’t discover any new redundant backedges. 

In step 3 edge (2,5) is found redundant after comparing it to edge (3,4).

Procedure Simple_Branch, (Algorithm 6.2.3), can perform its job in O(logN) time 

using N 2AogN PE’s. Using an adjacency matrix to represent the graph, we can find the 

tail with the minimal label for each vertex in Q(loglV) time with 0(NAogN) PE’s 

[H][DNS]. Deletion of the redundant edges found in step 1 or step 2 can be done in 

O(loglV) time using NAogN PE’s, for each head. Therefore steps 1 and 2 of the procedure

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



www.manaraa.com

70

procedure Head_Graph;
{Input is a simple branch K'. Output is a set of head-dependency graphs.}
1) {initialize}

Mark all heads;
Eliminate all non-head vertices from consideration;
Initiate a head-dependency graph G*=(N*,E*) where 

N*<- {all heads};
£V0;

2) {build the head dependency graph} 
for each head w in parallel do

for each backedge ( m, v )  in parallel do
i f v>w>mthenE* < - £ * u  {(w,v)};

3) {identify blocks}
Every vertex in G * without incoming edges is the beginning of a block; 
Every vertex in G * without outgoing edges is the end of a block; 
for each beginning of a block u in parallel do {Construct a block} 

block_end(if)<-min{v| v is an end of block and v>u}; 
vertices of block<—{v| u <v<block_end(w) and v is a head}; 
edges of blocks—{(x,y)| x,ye £*}; 

end. {Head_Graph}

Algorithm 6.2.4 Algorithm for head- dependency graph

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



www.manaraa.com

71

procedure Block_Cutset;
{Input is a head dependency graph D (No, Eo). Output is the cutset.}
1. Relabel the vertices according to their ranks in D;
2 . for every vertex u in parallel do min_adjacent(M)<—min{ v| (v,u)eED};
3. for every vertex u in parallel do construct gu(Nu,Eu) where 

Nu*-{y\yeND andy>w};
Eu<—0 \
for each vertex y >u in parallel do {each vertex has one in-edge} 

if rain_adjacent(y )<« then Eu=EuKj(u,y) 
else Eu u(min_adjacent(y) ,y);

4. for all vertices i and for all gu in parallel do
S ’undetermined’; { S(i,u) denotes the status of vertex i in gu } 

for all gu in parallel do
S(u, u )<—’in-cutset’; 
max-in(n)<—u;

5. for i=l to flogAfo] do
for each gu in parallel do

5.1 for all vertices xe Nu do
cp(x,«)<—0 ; { zero the number of copies requested }
5.2 for each edge (x,y) in parallel do 
{directly identify vertices that are not in cutset}
if (u<x<u+ 2 ,_1) and ((u+2‘~1)<y<u+2l) then

5.2.1 if S(jc,n)=’in-cutset’ then S(y,«)<-’out’;
5.2.2if S(x,n)=’out’ and j:<max-in(n) then S(y,u)<—’out’;

5.3 w=min{jtj S(x,u)=’undetermined’ and x<u+2‘};
5.4 if there is such w then do

5.4.1 cp(n,w)<—1;
5.4.2 {to avoid conflicts in 5.4.3 } 

make £ N U cp(x,u) copies of S(*,«);
xe

5.4.3 {merge in values from gw} 
for each xeN u in parallel do

if w <x <tt+2‘ then S(x,u)<—S(x,w);
5.5 max-in(« )^-max{y| S(y,u )=in-cutset};

6 . Cutset of the block<-{n| S(«,l)=in-cutset}; 
end. {Block_Cutset}

Algorithm 6.2.5 Algorithm for block cutset

can be performed in O(loglV) time using N 2AogN PE’s for the whole graph. There are at 

most N-1 edges left in step 3 of the procedure, sorting can be performed in O(logiV) time

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



www.manaraa.com

72

with N 2AogN PE’s [C]. The edge deletion can be done in constant time.

Continuing with our example we use the simple branch in Figure 6.2.3-b as input 

for our head dependency construction procedure (Algorithm 6.2.4). Step 1 is an initiali

zation step. Clearly only head vertices of the input branch are in the head-dependency 

graph. The set of edges is initially empty (step 1). In our example the set of head vertices 

is {3,4,7, 8 ,9 ,10,11}. The relationship between these vertices is computed in step 2 of 

procedure Head_Graph, (Algorithm 6.2.4). In this stage each backedge is considered 

against all head vertices to check whether the vertex is on the cycle created by this edge. 

Edges are added to show this relationship. For example, in Fig. 6.2.3-c, backedges (3,4), 

(4,7), (7,8), (7,9), (8,9), (9,10) and (10,11) are in head dependency graph. In step 3 of the 

procedure we identify the blocks in the graph. In our example there is only one block.

It is easy to see that procedure Head_Graph, (Algorithm 6.2.4), can be performed in 

0(logiV) time using 0(N 2AogN) PE’s on the EREW P-RAM model of computation. The 

initialization step can be done in constant time using 0(N) PE’s. In step 2, a backedge 

may produce 0(N) edges in the head-dependency graph. Since the input is a simple 

branch there are no write conflicts. This step can be performed in 0(1) time using O(N2) 

PE’s or in 0(logA/) time using 0(N 2AogN) PE’s. In step 3, finding the minimum can be 

done in O(logiV) time using o(iV2 /iogA0 PE’s for all vertices that are the beginning of 

blocks. Block identification can be done in 0(1) using 0(N 2) PE’s or O(logAZ) using 

0(N 2AogN) PE’s.

In the first step of procedure Block_Cutset, (Algorithm 6.2:5), we relabel the ver

tices for each block (The root of the block is determined in step 3 of procedure 

Head_Graph, (Algorithm 6.2.4)). For our example the relabeling is presented in

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



www.manaraa.com

73

<?3

V

e6

(6^

o  : in cutset

: not in cutset 

: undetermined

£7 '

O

^7

Q

step D:

cutsct={ 1.3.6} 
i.e. for nodes 
cutset = {3.7.10)

Figure 6.2.4 Determine a cutset of a branch

Fig.6.2.3-d. In step 2 of the procedure we compute the variable min_adjacent This

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



www.manaraa.com

variable is used in step 3 where we construct a subgraph gu(Nu,Eu)for each vertex u in 

the input graph. The min_adjacent value of vertices 2, 3, 4, 5, 6  and 7 are 1, 2, 3, 3, 5, 

and 6  respectively. gu(NuJ£u) is the subgraph rooted at u. We will see these g„’s allow 

us to maximize the parallel computation without conflicts. Each vertex is connected 

from the min_adjacent vertex computed in step 2. Adjustments are made for cases where 

min_adjacent is smaller than the root u, (Fig. 6.2.4). S(i,u), the status of vertex i in sub

graph gu, is initially set to ’undetermined’. This is done for all vertices, in step 4 of the 

procedure. In this step we also initialize S(u,u) to ’in_cutset’ and set the max_in variable 

associated with each root vertex u to u. In our example, consider the construction for ver

tex 5, gs(N$, E$), N$={5, 6 ,7}, S(5,5)<-’in-cutset’, S(6,5)=S(7,5)=’undetermined’ and 

max_in(5)<—5.

The loop in step 5 is the most significant part of the algorithm. Its correctness is not 

apparent and we will discuss it in Lemma 6.2.5. In iteration i of the loop we work on ver

tices y  in the range «+2'-1<y <k+2'. We identify the vertices in the cutset in two 

fashions. One is direct, that is, we determine the vertices that are not in the cutset, 

(S(y,«)=’out’), by looking at their immediate predecessors, step 5.2. Considering g i  in 

our example, (Fig. 6.2.4): In the Ist iteration of step 5, S(2,l)<—’out’ because 

S(l,l)=’in_cutset\ using edge (1,2), l<l<l+2° and 1+2°<2<1+21 the conditions for 

statement 5.2.1 hold (Fig. 6.2.4-a). The second way in which we determine membership 

in the cutset is by merging values of vertices calculated in other subtrees gw where w>u. 

This allows us to break the sequential nature of "look at the predecessor" idea. In the 2nd 

iteration of step, 5, (Fig. 6.2.4-b) statement 5.2 doesn’t cause any changes. Since 3 is the 

smallest vertex that is undetermined, statement 5.3 sets w to 3. In statement 5.4.3, S(3,l)

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



www.manaraa.com

75

is set to ’in_cutset\ since w<3<1+2‘, and S(3,3)= ’in-cutset’. The same statement, (5.4.3) 

sets the value of S(4,l) to ’out’ from S(4,3); In the 3rd iteration, (Fig. 6.2.4-c), Statement

5.2.1 sets S(5,l) to ’out’. In this iteration the value of w is 6 , (statement 5.3), and hence 

the value of S(6 ,l) and S(7,l) is obtained from S(6 ,6 ) and S(6,7) respectively, (statement 

5.4.3).

As for the complexity of procedure Block_Cutset (Algorithm 6.2.2): The relabeling 

can be performed in O(logA0 using 0(NAogN) PE’s [KR]. If a PE is assigned to each 

edge in step 2, there will be no read conflict Computing the minimum can be accom

plished in O(logA0 using 0(N 2AogN) PE’s. In Step 3 we need n copies of the head 

dependency graphs, in order to avoid read conflict The replication and the construction 

of the gu graphs can be performed in 0(logN) time with 0(N 2AogN) PE’s. Step 4 can be 

performed in 0(1) using 0(N 2) PE’s or Q(loglV) time using 0(N 2AogN) PE’s. Finally, 

Step 5 requires 0(log N) iterations. In each iteration we zero out vector cp(*,w) .(state

ment 5.1). Variable cp is used in order to ascertain the number of copies of gu that are 

needed to avoid read conflicts in statement 5.4.3. Clearly each of the statements, (5.1- 

5.5), that make up the loop can be performed in 0(logAO time with 0(N 2AogN) PE’s. 

Observe that there are at most N copies to be made in statement 5.4.2. By Lemma 6.2.2 

there is at most one immediate predecessor that could be in-cutset, there are no read 

conflicts in statement 5.2. Therefore step 5 can be performed in 0(log2 A/) time using 

0(N 2AogN) PE’s. In conclusion, procedure Block_Cutset can be performed in 0(log2AO 

time with 0(N 2AogN) PE’s on EREW P-RAM model of computation.

Define Du to be a subgraph of the head-dependency graph D that contains only ver

tices with label >u and their incident edges. Using Du, rather then gu in procedure

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



www.manaraa.com

76

Block_Cutset, variables min_adjacent and max-in are no longer required. We do need to 

use though, 0(N 3AogN) PE’s, since each Du may have N 2 edges. It is easy to observe 

that Du and gu are equivalent for the purpose of finding the minimal cutset of a brunch. 

We discuss the correctness of procedure Block_Cutset in the following paragraphs. To 

facilitate the discussion we use Du and gu interchangeably.

Lemma 6.2.5: After the i th iteration of the loop in step 5 of procedure Block_Cutset, 

S(y,u) for u<y <u+2‘ is set to ’in-cutset’ iff y  is put in S i by procedure 

Serial_Branch_MinCut, (Algorithm 6.2.1), with input Du.

Proof: We prove by induction on the number of iterations, i. In first iteration there is 

only one edge (x,y) in gu that satisfies u<x<u+2 ° and u+2°<y<u+21 that is (m,«+1 ). 

During the initialization, S(«,«) is set to ’in-cutset’. S(m,m+1) is set to ’out’ by step 5.2.1. 

Evidently u has no predecessor in Du and u +1 has one immediate predecessor in Du, 

therefore Serial_Branch_MinCut puts u in Si and m+1 in S 2 when applied to Du. 

Assume that the Lemma is true for all iterations i<n and examine iteration, i=n+l. By our 

assumption, all S(x,u) where u <x <u+2n are set to ’in-cutset’ or ’out’ iff u is put in S i or 

S 2 correspondingly, by procedure Serial_Branch_MinCut with Du as input There are 

three cases to examine for S(y,u) where u+2n<y <u+2n+l:

Case 1: S(y,u) is set to ’out’ by statement 5.2.1. This takes place if there is an edge (x,y) 

were u<x<u+2‘ - 1  and S(x,«) was already set to ’in-cutset’ in some earlier iteration. By 

our assumption, this means that x  was put in S i by procedure Serial_Branch_MinCut. 

Both in gu and in Du, vertex y  has an immediate predecessor x  in S i. Therefore pro

cedure Serial_Branch_MinCut places y in 5 2 -

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



www.manaraa.com

77

Case 2: S(y,u) is set to ’out’ by statement 5.2.2. This takes place if there is an edge (x,y) 

were u<x<u+2l~1 and S(x,u) was already set to ’out’ in some earlier iteration. Also 

u <x <max-in(w). By the construction of gu the vertex with label max-in(«) is an immedi

ate predecessor of y  in Du. But by statement 5.5 and step 4, S(max-in(«),w) = ’in-cutset’. 

Hence max-in(«)e5i by our assumption. Since y has an immediate predecessor in S i, y 

must be placed in S 2  by procedure Serial_Branch_MinCut when applied to Du.

Case 3: S(y,u) is set to ’out’ or ’in-cutset’ during the merge stage, by statement 5.4.3. 

This takes place if there is a vertex w that is the minimal vertex in the range 

u+2n<w <u+2n+l for which S(w,«) is ’undetermined’. We claim that w is placed in Sj 

by procedure Serial_Branch_MinCut and S(yv,u) is set to ’in-cutset’ correctly. To see 

that, let us consider the immediate predecessors of w. Clearly if w has no incoming edge 

it is in 5 1 . If it has one or more immediate predecessors in Du in the range [u,u +2") then 

they are considered in statement 5.2 of step 5. Since S(w, u)=’undetermined’ it is not the 

case that any of the immediate predecessors is predecessors in [«+2 ",w-l] then those are 

determined by statement 5.2 and are all set to ’out’ correctly. Hence by all immediate 

predecessors of w are determined as ’out’ and by our induction hypothesis and the dis

cussion in the first 2 cases all of them are in S 2 . But then procedure 

Serial_Branch_MinCut places w in S i as claimed. In procedure Block_Cutset the value 

of S(w,m) is obtained from S(w,w). S(w,w) is set to ’in-cutset’ in step 4 during the ini

tialization. Therefore S(w,u) is set correctly.to ’in-cutset’. From the construction of gw 

and our induction hypothesis it is clear that the rest of the values copied from gw to gu, 

(statement 5.4.3) are correct

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



www.manaraa.com

78

If vertex y placed in S 2 by procedure Serial_Branch_MinCut, it must have an 

immediate predecessor x  in S i. Vertex x  is either in [u,u+2") or in [w+2”0'-1]. If it is in 

[m,k+2 ") then by our assumption S(x,u) is determined correctly to ’in-cutset’ and there

fore statement 5.2.1 sets S(y,u) correctly to ’out’. If xe  [«+2”,y_1] then y  is processed by 

statement 5.4.3. From the discussion of case 3 above, the value of S(y,w) is set to ’out’ 

correctly. If vertex y placed in S 1 by procedure Serial_Branch_MinCut, it must have all 

its immediate predecessors in S 2 or no predecessor at all. We show in case 3 above that 

in both cases S(y,u) is set to ’in-cutset’, correctly. □

Corollary 6.2.2: After loglV iterations, S(y, l)=in-cutset iff y  is in S 1 by procedure 

S er ia l_ B ra n ch _ M in C u t, (Algorithm 6.2.1) on head-dependency graph D.

Proof: It is enough to observe that D is D 1 . The rest follows from Lemma 6.2.5.D

Theorem 6.2.1: Procedure P_BRANCH_CUTSET finds a minimum cutset for a branch. 

Proof: Follows from Corollaries 6.2.1 and 6.2.2.D

We can conclude that Procedure PJBRANCH CUTSET (Algorithm 6.2.2) can be

performed in O(log2N) time using 0(N 2AogN) PE’s or in O(logA0 time using 

0(V 3 /logJV) PE’s on the EREW P-RAM model of computation. This can be easily deter

mined from the complexity analysis of the procedures.

6.3. Minimum Cutset of a  Reducible Graph

Let T be a directed tree with root r. For every leaf v of T, there is a vertex w that is a 

predecessor of v such that every vertex between w and v has exactly one incoming edge 

and one outgoing edge, i. e., it is a chain from w to v in T. We call a chain in T that ends

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



www.manaraa.com

79

with a leaf an active chain. If we prune all the active chains from the tree T, new leaves 

and new active chains will be created. This pruning operation can continue until the root 

r becomes part of an active chain. We have shown that there could be at most O(loglV) 

pruning iterations for a rooted tree with N  vertices in Chapter 2. If T  is a spanning tree of 

a reducible graph, then the subgraph related to the active chain is a branch. Our algo

rithm finds a minimum cutset of a reducible graph by successively identifying branches, 

and finding the cutset of those branches. The procedure P_Cutset, Algorithm 6.3.1, is the 

skeleton of the algorithm.

Before we present the details of the algorithm we need to establish the correctness of our 

approach. We know that a reducible graph G has unique backedge set on any Depth First 

Search (DFS) tree of G [Sh]. We first establish that the same is true for a Breadth First 

Search (BFS) tree of G.

procedure P_Cutset:
{Input is a reducible graph G.}
1. Construct a breadth first spanning tree of reducible graph G;
2 . repeat
3. Identify all the branches;
4. Prune the branches;
5. Determine the cutset of each branch;
6 . until the root is determined.

Algorithm 6.3.1 Parallel algorithm for minimum cutset of reducible graphs

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



www.manaraa.com

80

Lemma 6.3.1: In a reducible graph G, an edge ( k , v )  is a backedge of a DFS spanning 

tree of G iff it is a backedge of any BFS spanning tree of G.

Proof: Consider a DFS spanning tree of G and an arbitrary BFS spanning tree of graph

G. Assume to the contrary that there is an edge (u,v) that is a backedge of the DFS span

ning tree of G but is not a backedge in a BFS spanning tree of G. We examine two cases:

Case 1: (u,v) is a tree edge in the BFS spanning tree. Accordingly, u is a predecessor of v 

in the tree. That is, there is a path from root to u without passing v and hence v does not 

dominate u. Since G is a reducible graph and («,v) is a back edge of the DFS spanning 

tree of G it implies that v has to dominate u. We have a contradiction.

Case 2: («,v) is a crossedge in the BFS spanning tree. Accordingly, there is a path from 

the root to u that does not pass through v. As in case 1, this is inconsistent with the pro

perties of reducible graphs.

In a similar way we can show that any backedge of a BFS spanning tree is also a back

edge of a DFS tree.D

Corollary 6.3.1: Any BFS spanning tree of a reducible graph partitions the edge set into 

backedges and DAG edges and the DAG edge set can be partitioned into tree edges and 

cross edges.

Proof: It follows from Lemma 6.3.1 and properties of reducible graphs.□

Corollary 6.3.2: An algorithm that is based on the decision principle can find a minimum 

cutset of a reducible graph using the DAG defined by a BFS tree of the graph.

Proof: It follows from Lemma 6.3.1 and Corollary 6.3.!.□

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



www.manaraa.com

81

Consider the first iteration of the repeat loop of procedure P_Cutset, (Algorithm

6.3.1). Initially all vertices of the reducible graph G are undetermined. Using the active 

chains of the BFS tree T  of G, we construct active branches of G. Vertex v is in an active 

branch of G iff v is in an active chain of T and edge (u,v) is in an active branch iff both u 

and v are vertices in the branch.

Lemma 6.3.2: In the first iteration of the repeat loop, vertex u is determined to be in the 

cutset of an active branch by our algorithm iff u is determined to be in cutset of the redu

cible graph G by the decision principle.

Proof: Let the vertices of branch B be NB and let the cutset of this branch as determined

by Procedure P J 8 RANCH CUTSET, (Algorithm 6.2.2), be CBcN B. Let the cutset of G

produced by procedure Serial_Min_Cutset, (Algorithm 6.1.1), be Cq and let 

C B=NBn C G. We show that veC B iff v e C B, in other words CB=CB. Since it is the 

first iteration of procedure P_Cutset, (Algorithm 6.3.1), every vertex involved is either a 

leaf or has exactly one child in T. If vertex u is a head, its tails must be its descendants in 

the same branch, otherwise G is not reducible.

Assume to the contrary that there exist a vertex u such that u sC B but u& CB. In 

that case there must be some vertex x  between u and its tail v that is determined not to be 

in CB, but is in C B. Thus x  is a head which has a tail that is not in NB, which implies x  

has more than one child in T. But this is impossible since every vertex that is considered 

in the first iteration has exactly one child. Therefore, if u e CB it implies that u<=CB.

To complete the proof we need to show that if u e C B it implies that u eC B. 

Assume to the contrary that there exists a vertex u such that u e C B but u£C B. In that 

case there must be a vertex x<= CB between vertex u and its tail v on the path in B. Also

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



www.manaraa.com

82

there is a path from u to v that contains vertices that are not in Ng and all the vertices on 

that path are not in Cg. It implies that vertex u does not dominate vertex v and G is not 

reducible, contradiction. □

Corollary 6.3.3: The vertices that are determined to be in the cutset by procedure 

P_BRANCH_CUTSET in the first iteration are in the minimum cutset of the reducible 

graph determined by the decision principle.

Proof: Follows from Lemma 6.3.2 and Theorem 6.2.l.D

Some of the successors in G of the active branches in the i th iteration are already 

processed. Several of those successors are determined to be in the minimum cutset and 

others are determined not to be in the cutset The assumptions that allowed us to process 

the active branches in the first iteration independently do not hold. We now present a
B

a b
Figure 6.3.1. Example of branch normalizing

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



www.manaraa.com

83

transformation that allows us to treat active branches at any iteration independently.

Procedure BRANCH_NORMALIZING (Algorithm 6.3.2) processes an active 

branch B with some predetermined successors and produces a normalized branch with no 

successors. Once we obtained the normalized branch we can apply our branch cutset 

algorithm. In the first step of the procedure we construct a graph g' that includes the ver

tices of branch B and all vertices that are already determined not to be in the cutset In 

Fig. 6.3.1-a, we show an example branch B (dark vertices), its successor vertices that are 

determined not in the cutset (white vertices) and associated edges. Fig. 6.3.1-b shows 

graph g' that is obtained from the graph in Fig. 6.3.1-a by deleting all branch edges. In 

step 2  of the algorithm we compute the transitive closure of g' to find the exact relation

ships between branch vertices and successor vertices.

procedure BRANCH_NORMALIZING;
{Input B, a branch that some of its successors have been determined. These vertices are 
successors of the current active branch. Edges between two vertices of the branch are ei
ther tree edges or back edges.}

1) Construct a graph g'<^(Ng', Eg>) such that
Ng'*~{v| v is in B  or v is a vertex that is determined not to be in the cutset}; 
Eg'<-{(«,v)| u,v are in g' but are not both in B };

2) Compute the transitive closure on g';
3) {Construct normalized branch.}

3.1 Construct a graph fc<-(lVA, £*), initially
Nh<-{y\y is undetermined};

3.2 for each pair of vertices x,y in B in parallel do
if x <y and x  can reach y  in g' then 

Eh<^Eh u{(x,y)};
3.3 /iu{edges of £}; 

end. {BRANCH_NORMALIZING}
Algorithm 6.3.2 Algorithm for branch normalizing

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



www.manaraa.com

84

Based on the computation of step 2 we construct in step 3 our normalized branch. In

3.1 we initialize the graph to contain the vertices of B, (undetermined vertices). The set 

of edges is initially empty. We next consider the relation between all pairs of vertices in 

the transitive closure of g' in step 3.2. Edge (x,y) is added to our normalized branch if 

x  <y and there is a path from x  to y  in g'. The result of this computation on our example is 

presented in Fig. 6.3.1-c. Edges (1,3), (1,4), (1,5), (1,6) and (4,6) are added in step 3.2. 

Finally at step 3.3 we add back the original edges of B (Fig. 6.3.1-d), to obtain BN.

Lemma 6.3.3: In the normalized branch B N, head u can reach its tail v iff there is a path 

from u to v in the reducible graph G and every vertex on the path (except u and v) is not 

included in the cutset by the serial algorithm.

Proof: By the construction of B N in procedure BRANCH_NORMALIZING (Algorithm

6.3.2).D

The complexity of procedure BRANCH_NORMALIZING is dominated by the tran

sitive closure step. This can be done in O(log2 A0 time using N 3AogNPE’s on the EREW 

P-RAM model of computation [DNS] [H]. The input is represented as an NxN matrix 

where N  is the number of vertices involved in normalizing process. It is easy to see that 

all the other steps can be computed in O(logN) time with 0(N 2AogN) PE’s. Thus 

BRANCH_NORMALIZING can be wrapped up in 0(log2N) time with 0(N 3AogN) 

PE’s.

After obtaining B N we can use P_BRANCH_CUTSET to find a minimum cutset of 

the branch BN. Notice that procedure BRANCH_NORMALIZING can produce a branch 

where some cycles contain more than one backedge (such as 1-4-6 in g' of Fig. 6.3.1-d).

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



www.manaraa.com

85

Procedure MIN_CUTSET_REDU CEBLE_G;
{Input is a reducible graph G}

1. Construct a BFS tree T of G;
2. Label the vertices of T in postorder;
3. for each vertex u e  T  do

DECISION#(m)<—outdegree(w); 
every vertex is undetermined initially;

4. repeat
4.1 Identify all active branches;

{find consecutive vertices with DECISION#=l starting bottom up 
from each vertex with DECISION#=0}

4.2 for every active branch B in parallel do
4.2.1 BRANCH_NORMALIZING;
4.2.2 P_BRANCH_CUTSET;

4.3 if a vertex u is newly determined and v is its parent in T  then
DECISION#(v)<—DECISION#(v)-1;

4.4 if a vertex y is determined in-cutset then delete y  from G; 
until root is determined;

5. Minimum cutset«-{y|y is determined ’in-cutset’}; 
end. {MIN_CUTSET_REDUCIBLE_G}

Algorithm 6.3.3 Parallel algorithm for minimum cutset of reducible graphs

It suggests that the loop containing (1,6) in B N is not a simple cycle. Procedure 

Branch_Normalizing must add (1,4) if (1,6) is added. (1,6) will be deleted as a redundant 

backedge in P_BRANCH_CUTSET.

We are now ready to present the parallel algorithm for finding a minimum cutset of 

a reducible graph G (Algorithm 6.3.3):

In Algorithm 6.3.3, variable DECISION# in MIN_CUTSET_REDUCIBLE_G is 

used to identify the active branches. It is part of the data structure of the tree and is 

. updated after each iteration for the remaining undetermined vertices. If u has 

DECISION#(m)=0, u  will be a leaf in next iteration, if u has DECISION#(«)=l then u is

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



www.manaraa.com

86

(or will be) in some active branch.

Lemma 6.3.4: Procedure MIN_CUTSET_REDUCIBLE_G finds a minimum cutset of 

reducible graph G.

Proof: By previous lemmas and the decision principle.□

It is easy to see that algorithm MIN_CUTSET_REDUCIBLE_G can be done in 

O(log3 A0 time by using 0(N 3AogN) PE’s on EREW P-RAM model of computation. 

Step 1 can be performed in 0(log2 A/) using 0(N 3AogN) PE’s,[DNS] [GM]. Step 2 can 

be done in O(logN) with 0 (N) PE’s using the Euler tour technique[TV]. The computa

tions of steps 3 4.1 and 4.3 can be performed in O(logTV) by 0(N 2AogN) PE’s using stan

dard techniques. As we discussed earlier Step 4.2.1 and 4.2.2 can be done n 0(log2N) 

with 0(N 2AogN) PE’s. Finally Step 4.4 can be done in 0(1) with O(N2) PE’s. The 

number of iterations is bounded by O(loglV).

Theorem 6.3.1: Algorithm MIN_CUTSET_REDUCIBLE_G finds a minimum cutset of 

a reducible graph in O(logSN) time by using 0(N 3AogN) processors on the EREW P- 

RAM model of computation.

Proof: Follows from Lemma 6.3.4 and complexity analysis.D

6.4 Heuristic for Minimal Cutset of General Graphs

For general graphs the minimum cutset problem (i.e., the feedback vertex set prob

lem) is NP-complete [K]. Barry K. Rosen has presented a linear heuristic method to find 

a cutset for general graphs [R] based on Shamir’s algorithm. We present here a parallel

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



www.manaraa.com

87

heuristic. The closer is the input graph to the reducible graph, the closer is the cutset to 

the optimal solution. The heuristic has the same complexity as the parallel algorithm for 

finding minimum cutset of reducible graphs.

The parallel heuristic for finding a minimal cutset of digraphs is based on procedure 

MIN_CUTSET_REDUCIBLE_G (Algorithm 6.3.3). For a general graph the cycles may 

not be handled simply by procedure P_BRANCH_CUTSET as it is called in each itera

tion of Algorithm 6.3.3. In some iteration, there may exist a cycle of G where every ver

tex on the cycle is determined not to be in the cutset To solve this problem, we add a 

procedure H_CHECKING (Algorithm 6.4.1) after the PJBRANCH.CUTSET of step 4.2 

in each iteration of the loop in Algorithm 6.3.3.

Lemma 6.4.1: Every cycle of G is cut by the cutset that is found by the heuristic.

Proof: Assume to the contrary that there is a cycle C that is not cut by the cutset found 

by the heuristic. In other words, there is a cycle in G where every vertex on the cycle is 

determined not to be in the cutset Without loss of generality, we assume that final ver

tices in the cycle are determined in the i th iteration. In the i th iteration there must be 

some vertices that belong to cycle C that are B_vertices, (members of current set of 

active branches). After applying procedure BRANCH_N0RMAL1ZING and procedure 

P_BRANCH_CUTSET to the active branches, all the cycles without any cross edges 

B_vertices are cut If C is not cut there must be some cross edges C. We consider all the 

possibilities for cycle C containing backedges and tree edges between B_vertices. There 

are four cases to review:

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



www.manaraa.com

88

procedure HCHECKING;
{Input is a set of S’s, a set of B N,s that are defined in BRANCH_NORMALIZING (see 
Fig. 4.1-a and 4.1-d). Let vertices in B N be B_vertices (vertices in current branches) and 
other vertices be S_vertices (vertices are successors of the B_vertices). Let Sc denote the 
set of vertices that are determined in the cutset.}
1. {Cut cycles that don’t contain backedges between B_vertices}

1.1 for each B construct a graph B'=B-{SC and associated edges};
1.2 Construct a graph H={Nj{JEH)

{vIv is in some S'};
Efj^-{(u,v)\u,veNn,(u,v)eE of G but is 

not a backedge between B_vertices.}
1.3 Compute transitive closure on H;
1.4 Let B'n=Bn -{Sc and associated edges};
1.5 In each B'N do

1.5.1 if y  can reach x  without passing any backedges then
y  and x  are in same subbranch bN;

1.5.2 for each subbranch bN=(Nb,Eb) do
Sfc<-{(x,y)|(x,y)eS'N and x,y<=Nb); 
if x  <y and y  can reach jc in H  then 

Eb<r-EbKj{(x,y)}\
1.6 for each block do P_BRANCH_CUTSET;

2. {Cut cycles contain backedges and cross edges between B_vertices.}
2.1 H<r-H-{SC and associated edges};
2.2 Compute transitive closure on H;
2.3 for each B'N do

if (x,y) is a backedge and y  can reach * in H  then 
Sc<—Scu{y};

3. {Cut cycles don’t contain backedges and cross edges between B_vertices.}
3.1 H<r-H-{SC and associated edges};
3.2 Compute transitive closure on H;
3.3 if x  can reach itself in H  then

Sc^-ScUt*};
end; {HCHECKING}

Algorithm 6.4.1Heuristic for minimal cutset

Case 1: Cycle C does not contain any backedges but contains tree edges between 

B_vertices. It is the case as shown in Fig. 6.4.1-a. By step 1.5, the cycle will be 

represented independently in the subbranches. Thus step 1.6 of procedure

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



www.manaraa.com

89

P_BRANCH_CUTSET will cut C. This contradicts our assumption that C was not cut

Case 2: Cycle C contains backedges and tree edges between B_vertices. It is the case 

illustrated in Fig. 6.4.1-b. In step 2.3 every backedge on C sets one vertex in the cutset. 

Hence C should be cut at least once. Again, a contra diction.

Case 3: Cycle C does not contain tree edge but contains backedges between B_vertices, it 

is similar to case 2, which handled by step 2.3, contradiction.

Case 4: Cycle C does not contain any backedges nor tree edges between B_vertices. It is 

the case shown in Fig. 6.4.1-c. In step 3. every vertex on C is determined to be in the 

cutset, contradiction. □

When procedure MIN_CUTSET_REDUCIBLE_G is applied to a graph, every ver

tex belongs to an active branch certain iteration. Hence every cycle will be cut in the

I

b
determined in  cutset

Figure 6.4.1 Cases of remaining cycles

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



www.manaraa.com

90

iteration in which the final undetermined vertices of the cycle are all members of active 

branches. By Lemma 6.4.1, the method finds a cutset of general graph.

Lemma 6.4.2: If the input graph G is reducible, procedure H_CHECKING will not clas

sify any vertices as part of the cutset.

Proof: Assume to the contrary that the input graph is reducible and vertex u is deter

mined to be in the cutset by procedure H_CHECKING. We have three cases to consider:

Case 1: u is determined in the cutset by step 1.7 of H_CHECKING. It implies there is a 

cycle in G which is similar to the cycle shown in Fig. 6.4.1-a. Deleting any one of the 

edges on the cycle will produce a different DAG of G. But a reducible graph has a unique 

DAG, contradiction.

Case 2: u is determined in the cutset by step 2.3 of H_CHECKING. It implies there is a 

cycle in G which is similar to the cycle shown in Fig. 6.4.1-b. There must be a backedge 

(x,y), such that the root can reach y  without passing x  which violates the properties of 

reducible graphs.

Case 3: u is determined in the cutset by step 3.3 of H_CHECKING. It implies that there 

is a cycle in G which is similar to the cycle shown in Fig. 6.4.1-c. Deleting any one of 

the edges on the cycle will produce a different DAG of G. But this again contradict with 

the fact that G is a reducible graph. □

The proof of Lemma 6.4.2 implies that the procedure H_CHECKING will deter

mine very few vertices in the cutset if the graph is very close to be a reducible graph. 

Lemma 6.4.1 and Lemma 6.4.2 imply that the parallel heuristic has a good performance 

on general graphs. This algorithm can recognize whether a graph is reducible or not by

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



www.manaraa.com

checking if any vertices are determined in the cutset by procedure H_CHECKING, 

though it is not as efficient as the method of J. Lucas and M. Sackrowitz [LS]. The com

plexity of procedure H_CHECKING is dominated by the complexity of computing the 

transitive closure. Thus the procedure can be performed in 0(log2 lV) time using 

0(N 3AogN) PE’s and the parallel heuristic can be executed in O(log3AO time using 

0(N 3AogN) PE’s on EREW P-RAM model of computation.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



www.manaraa.com

CHAPTER 7

CONCLUSIONS

The basic goal of this study was to find efficient parallel methods in solving graph 

problems that are related to distributed systems and software engineering.

The primary model of parallel computation, that we have been working with, was 

EREW P-RAM (exclusive read exclusive write parallel random access machine). It is a 

multiprocessor, shared memory system that forbids several processors to access the same 

memory simultaneously. This model is considered closer to practical multiprocessor sys

tems than other models.

This research focused on finding efficient parallel methods for graph problems by 

partitioning the problems into subproblems so as to distribute them to processors avail

able.

We have developed a parallel pruning decomposition technique (PDS), which parti

tions the graph into branches and identifies the edges of the graph into different classes. 

For EREW P-RAM model of computations, the PDS has small overhead and simple data 

structures. In the modified version of PDS, the bottleneck of complexity is the spanning 

tree construction. For those graphs in which the spanning tree can be found efficiently on 

EREW P-RAM, the PDS has even more advantages.

Using the PDS, we have achieved efficient parallel methods for some important 

graph problems. They are, finding biconnected components (including articulation points 

and bridges of graphs), ear decomposition and st-numbering computing. Particularly in

92

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



www.manaraa.com

developing the ear decomposition, we establish a no forward edge tree (NF-tree) to 

obtain the biconnected certificate of a biconnected graph, which has the potential of sub

stituting breadth first search trees in certain cases.

We apply the st-numbering to some network related problems.

•  The bipartition problem is to partition a biconnected system into two connected 

parts with specific sizes and with a specific vertex in each side. It has applications in 

message routing, distributed system management and scheduling problems.

•  Centroid trees and centered trees constructions in biconnected graphs belong to 

location problems that are often used to locate servers to meet certain criteria. The 

minimum total distances and minimum farthest distance are factors considered in 

centroid tree and centered tree construction respectively. We use st-numbering and 

bipartition to solve these problems efficiently. Especially for the centered tree prob

lem, our parallel method implies a more efficient serial method. A further con

sideration can be to find the best centroid tree or centered tree in the sense of dis

tances among all the centroid trees or centered trees.

•  The strong orientation problem is to change a two way system into a one way sys

tem so that messages can still be routed. We apply the st-numbering here to obtain a 

very simple solution.

For st-numbering, further research can focus on on-line computing, for example, 

finding an st-numbering of {x,y} from a given st-numbering of {u,v}. This will greatly 

reduce the computing time for frequently updating operations on networks.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



www.manaraa.com

94

The PDS can also be applied to directed graphs. Finding a minimum cutset of redu

cible graphs is one example. Most computer programs can be represented by reducible 

graphs. To select a set of vertices that cut all the cycles in directed graphs usually leads 

to a simpler and more efficient analysis and verification of software. We apply the PDS 

to directed graphs here to achieve a parallel solution for finding a minimum cutset of 

reducible graphs. Derived from the method, we present a heuristic for general graphs.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



www.manaraa.com

REFERENCES

[A] M. Atallah, "Parallel Strong Orientation of an Undirected Graph," Inf. Proc.

Lett. Vol. 18, pp.37-39,1984.

[ADKP] K. Abraharason, N. Dadoun, D. A. Kirkpatrick and T. Przytycka, "A Simple 

Parallel Tree Contraction Algorithm," Tech. Report 87-30, Dept of Computer 

Science, The University of British Columbia, Vancouver, B.C., Canada, 1987.

[CDH] Y. Caspi, E. Dekel and J. Hu, "On the Centroid Tree of Trees," manuscript, 

1992.

[Ch] G. A. Cheston, "Generating a Spanning Tree with a Specified Node as a Cen

troid Point for Biconnected Graphs," Congr. Numer. Vol. 43, pp.211-219,1984.

[Co] R. Cole, "Parallel Merge Sort," Proc. 27th FOCS, pp.511-516, 1986.

[CFHP] G. Cheston, A. Farley, S. Hedetniemi and A. Proskurowski, "Centering a span

ning tree of a biconnected Graph," Info. Proc. Lett, Vol. 32, pp.247-250,1989.

[CLR] T. Cormen, C. Leiserson and R. Rivest, Introduction to Algorithms, MTT Press, 

Cambridge, MA, 1990.

[CTa] D. Cheriton and R. E. Taijan, "Finding Minimum Spanning Tree," SIAM J. on 

Comp., Vol.5, No.4, pp.724-742,1976.

[CTh] J. Cheriyan and R. Thurimella, "Algorithms for Parallel k-Vertex Connectivity 

and Sparse Certificates," STOC, 1991.

[CV1] R. Cole and U. Vishkin, "Optimal Parallel Algorithms for Expression Tree 

Evaluation and List Ranking," AWOC, pp.91-100, 1988.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



www.manaraa.com

96

[CV2] R. Cole and U. Vishkin, "Methodological Parallel Evaluation of Expression 

trees," manuscript, 1986.

[DH1] E. Dekel and J. Hu, "Parallel Pruning Decomposition," UTD Tech. Rep. 

UTDCS-11-91,1991.

[DH2] E. Dekel and J. Hu, "Efficient Parallel Graph Decomposition and Biconnected 

Components in Graphs on EREW," UTD Tech. Rep. UTDCS-7-91,1991.

[DH3] E. Dekel and J. Hu, "Parallel Algorithms for Node(s) Locating Tree Construc

tion on Biconnected Graphs," UTD Tech. Rep. UTDCS-12-91,1991.

[DH4] E. Dekel and J. Hu, "EREW Ear Decomposition Algorithm," UTD Tech. Rep. 

UTDCS-13-91,1991.

[DH5] E. Dekel and J. Hu, "A Parallel Algorithm for Mininum Cutsets of Reducible 

graphs," Proc. 29th Allerton Conf. on Commun., Contro. and Comp., 508-517, 

1991.

[DNS] E. Dekel, D. Nassimi and S. Sahni, "Parallel matrix and graph algorithms," 

SIAM J. Comput. vol. 10, No. 4, pp.657-675,1981.

[DNP] E. Dekel, S. Ntafos and S. T. Peng, "The compression trees and their applica

tions," Proc. Int Conf. Parallel Processing, pp. 132-139,1987.

[E] S. Even, Graph Algorithms, Computer Science Press, 1979.

[F] R. W. Floyd, "Assigning meaning to programs," Proc. Symp. Appl. Math.,

Vol. 19 , pp. 19-32, 1967.

[FRT] D. Fussell, V. Ramachandran and R. Thurimella, "Finding Triconnected Com

ponents by Local Replacements," Proc. ICALP 89, Springer-Verlag LNCS 372,

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



www.manaraa.com

pp.379-393, 1989.

[G] H. Gazit, "Optimal EREW Parallel Algorithms for Connectivity, Ear Decompo

sition and st-Numbering of Planar Graphs", 5th Inter. Paral. Proc. Symp., 

pp.84-94,1991.

[GM] H. Gazit and G. L. Miller, "An improved parallel algorithm that computes the 

BFS numbering of a directed graph," Inf. Proc. Letters Vol.28, pp.61-65,1988.

[GMT] H. Gazit, G. L. Miller and S. H. Teng, "Optimal Tree Contraction in EREW 

Model," Proc. 1987 Priceton Workshop on Algorithm, Arcitecture and Technol

ogy Issues for Models o f Concurrent Computation, 1987.

[GR] A. Gibsons and W. Rytter, "An Optimal Parallel Algorithm for Dynamic 

Expression Evaluation and Its Applications," Symp. on Foundations o f Software 

Technology and Theoretical Comp. Sci., Springer Verlag, pp.453-469,1986.

[H] D. S. Hirschberg, "Parallel Algorithm for the Transitive Closure and the Con

nected Components Problems," ACM Symposium on the Theory o f Computating, 

pp.55-57,1976.

[HB] K. T. Herley and Gianfranco Bilardi, "Deterministic Simulations of PRAMs on 

Bounded Degree Networks," 26th Allerton Conf. on Commun., Contr. and Corn- 

put., pp. 1084-1093,1988.

[HHT] J. Hu, D. Huynh and L. Tian, "Parallel Bisimulation Equivelances of Tree 

Processes," manuscript, 1992.

[HUl] M. S. Hecht and J. D. Ullman, "Flow graph reducibility," SIAM J. Comput. vol 

1, No 2, pp.188-202,1972.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



www.manaraa.com

[HU2]

[J]

[K]

[KA]

[KD]

[KR]

[L]

[LS]

[M]

98

M. S. Hecht and J. D. Uliman, "Characterizations of reducible flow graphs," J. 

Assoc. Comput. Mech., Vol.21, pp.367-375,1974.

H. Jung, "An optirasl Parallel Algorithm for Computing Connected Components 

in a Graph," preprint, Humboldt-University Berlin, German Democratic Repub

lic, 1989.

R. M. Karp, "Reducibility among combinatorial problems," Complexity of Com

puter Computations, R. E. Miller and J. W. Thatcher, eds., Plenum Press, New 

York, pp.146-160,1972.

A. Kang and D. Ault, "Some Properties of a Centroid of a Free Tree,"

Inf. Proc. Lett. Vol.4, pp. 18-20,1975.

S. R. Kosaraju and A. L. Delcher, "Optimal Parallel Evaluation of Tree- 

structured Computations by Raking," extended abstract, The Johns Hopkins 

University, 1987.

R. M. Karp and V. Ramachandran, "A Survey of Parallel Algorithms for 

Shared-Memory Machines," Handbook o f Theoretical Computer Science, 

Cambridge, MIT Press, 1990.

L. Lovasz, "Computing Ears and Branchings in Parallel," Proc. 26th FOCS, 

pp.496-503,1985.

J. M. Lucas and M. G. Sackrowitz, "Efficient parallel algorithms for path prob

lems in directed graphs," Proc. SPAA, pp.369-378, 1989.

E. Minieka, "The Optimal Location of a Path or Tree in a Tree Network," Net

work, Vol.15,309-321, 1985.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



www.manaraa.com

[MR]

[MSV]

[NM]

[P]

[R]

[RR]

[RV]

[Sh]

[SI]

[STN]

99

G. Miller and J. Reif, "Parallel Tree Contraction and Its Application," Proc. o f 

26th FOCS, pp.478-489,1985.

Y. Maon, B. Schieber and U. Vishkin, "Parallel Ear Decomposition Search and 

st-Numbering in Graphs," Theo. Com. Sci., Vol.47, pp.277-298,1986.

D. Nath and S.N. Maheshwari, "Parallel Algorithms for the Connected Com

ponents and Minimal Spanning Tree Problems," Inf. Proc. Lett., Vol. 14, pp.7- 

11,1982.

F. P. Preparata, "New Parallel Sorting Scheme," IEEE Transactions on Comput

ers, Vol.C-27, No.7, pp.669-673,1978.

B. K. Rosen, "Robust linear algorithms for cutsets," J. Algorithms Vol.3, 

pp.205-217, 1082.

V. Ramachandran and J. Reif, "An Optimal Parallel Algorithm for Graph 

Planarity," FOCS, pp.282-287,1989.

V. Ramachandran and U. Vishkin, "Efficient Parallel Triconnectivity in Loga

rithmic Time," Proc. 3rd AeGean Workshop on Computing, Springer-Verlag 

LNCS 319, pp.33-42,1988.

A. Shamir, "A linear time algorithm for finding minimum cutset in reducible 

graphs," SIAM J. Computing Vol.8, pp.645-655, 1979.

P. J. Slater, "Centrality of Paths and Vertices in Graph: Cores and Pits," Proc. 

4th International Graph Theory Conf, pp.529-542,1980.

H. Suzuki, N Takahashi and T. Nishizeki, "A Linear Algorithm for Bipartition 

of Biconnected Graphs," Inf. Proc. Lett., Vol.33, pp.227-231,1990.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



www.manaraa.com

[TC]

[TV]

[VI]

[V2]

[W]

100

Y. H. Tsin and F. Y. Chin, "Efficient Parallel Algorithms for a Class of Graph 

Theoretic Problems," SIAMJ. Comput. Vol.13, No.3, pp.580-599, 1984.

R. E. Taijan and U. Vishkin, "An Efficient Parellel Biconnectivity Algorithm," 

SIAM J.Comput., Vol. 14, No.4, pp.862-874,1985.

U. Vishkin, "Implementation of Simulaneous Memory Access in Models That 

Forbid It," J. o f Algorithms, Vol.4, pp.45-50, 1983.

U. Vishkin, "On Efficient Parall Strong Orientation," Inf. Proc. Lett., Vol. 20, 

pp.235-240, 1985.

H. Whitney, "Non-separable and Planar Graphs," Trans. Amer. Math. Soc., 

Vol.34, pp.339-362,1932.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



www.manaraa.com

VITA

Jie Hu was bom in Shanghai, The People’s Republic of China, on May 18,1950, the 

son of Mr. Ou Hu and Mrs. Hongchun Lan. After studying three years in middle school, 

he could not continue his formal education because of the Cultural Revolution. He then 

worked on a farm for seven years and in a grocery store for four years. He then worked 

as an interpreter in the Scientific and Technical Information Research Institute of 

Shanghai Petrochemical Complex in 1979. Later an exception was made, due to his lack 

of a university degree, and he was promoted to an assistant engineer. During these years 

he studied high school courses by himself and obtained more than sixty self-paced credit 

hours from the Shanghai Jiaotong University. He married Weiping Lu in 1982 and three 

years later enrolled in the Computer Science program of the University of Texas at Dal

las. He received the degrees of Bachelor of Science in 1987 and Master of Science in 

Computer Science in 1989. For the past three years, his work has focused on parallel 

algorithms for distributed systems and software engineering.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.


